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Abstract

The Judicial Center Annex is a 210,000 square foot addition to Montgomery County’s Judicial Center
located in Rockville, MD. The $67 million dollar project is currently under construction and slated to
finish in April of 2013.

The structural system, as designed is a post tensioned slab supported by reinforced concrete columns.
The lateral force resisting system is reinforced concrete shear walls and the foundations are core drilled
piers.

This report is the result of a semester of research upon the existing structural design. Based upon the
findings a proposal was created for a system redesign. Due to the fact that the building lacked a height
restriction it was determined to explore a steel alternative to the concrete construction. Also, as seismic
design was an interest, the building was “moved” to San Francisco where the greater seismic forces
would need to be dealt with.

The redesign in Maryland necessitated a cost and schedule comparison to determine the viability of the
change in systems, so this was chosen as one breadth for further exploration. The other breadth was
inspired by the sustainable features found upon the roof. The JCA has both green roof and photovoltaic
panels. It was determined to investigate if changing the green roof portions to PV panels would be more
beneficial for the owner by comparing the life cycle cost, carbon emissions, and LEED impacts of the two
systems. The LEED checklist would also be further explored looking for opportunities to improve upon
the Gold rated building.

The steel structure was able to be implemented effectively, using braced frames in lieu of the shear
walls and maintaining the current grid to avoid impacting the layout. The large floor to floor heights and
generous plenum spaces made a height adjustment largely unnecessary, with the total height only
increasing by a 1.5”. It was estimated that the system could save in the order of $700k in cost and a
month in schedule.

The steel move to California necessitated changing the ordinary concentrically braced frames to special
concentrically braced frames in order to deal with the increased forces. This required special detailing
and turned out to be slightly uneconomical due to the one chevron configuration. Changing this to an
eccentrically braced frame saved in the order of $200k and 70 tons of steel. Adding additional frames
also took advantage of certain code provisions and helped mitigate torsion problems.

The sustainability study showed that the green roof was the better option, as it had a lower initial
investment which it paid back quicker. It also had other benefits in the form of net negative carbon
emissions, storm water runoff control, urban heat island reduction, as well as impacting a possible 7
LEED points.
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Chapter 1 -Building Introduction

The Judicial Center Annex (JCA) is a modern addition to o W
the existing Montgomery County Judicial Center. Located
on the corners of Maryland Avenue and East Jefferson
Street in downtown Rockville, MD, the JCA is set to
provide a bold statement through both its architecture
and engineering. Construction on the addition began this
past April and is projected to take two years to complete.

The JCA will stand 114’ tall at the crest of each of the
four lanterns located on top of the building, so tall that

limitations on local building codes needed to be waived -
for overall building height. Six stories rise above the Figure 1-1: Site Location, Source: Bing.com
ground, with garage and terrace levels located below

grade, adding approximately 210,000 sq ft to the Judicial Center which includes 10 more courtrooms
and several administrative spaces.

The project team, led by AECOM who provided both architectural and the majority of building
engineering services, was able to achieve a unique look through both form and material. The East and
West Elevations (Figure 1-2) are dominated by glazing, with the curtain wall that covers the East
wrapping around the South corner. This curtain wall system is unique in that it uses glass stabilizing fins
instead of traditional aluminum mullions, which enables an all glass look that when combined with the
way the slab cantilevers out from the structure gives the illusion of the floors floating without structure.
On the North the addition abuts against the original Judicial Center. The elements of the fagade not
covered in glass are sheathed in either a powder
coated aluminum that has a reddish hue or
architectural pre-cast panels that are more
reminiscent of the exterior of the original building.

From the roof projects four lanterns which have a
translucent linear glazing system allowing them to
light up the night sky in a truly dramatic manner. The
roof is also the site of two of the JCA’s sustainable
features that enabled it to achieve a LEED Gold
Rating. The tops of each of the four lanterns are
covered in photovoltaic panels, while green roofs

Figure 1-2: West Elevation cover much of the remaining roof.
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1.1 - Structural Overview

The JCA sits atop core-drilled concrete piers due to the rather poor soil conditions, all columns coming
to bear atop a pier. The floor systems are post-tensioned slabs, with wide-shallow beams running one-
way on the typical levels framing into cast-in-place concrete columns. The lateral system consists of five
concrete shear walls, which rise continuously to the penthouse level, with some continuing to support
the roof.

This building was designed as Occupancy Ill according to Sheet 1.5001 due to the detaining cells
contained.

Floor Systems

As mentioned previously, the floor systems for the JCA utilize post-tensioning. The economy is achieved
by greater span lengths being possible, with thinner slab depths. The typical floor system, which begins
on the terrace level and extends to the 5th floor, has both 8” and 9” slab depths, with wide-shallow
beams running in the plan NS direction. The beams extend 8” below the slab and are not centered on
the column lines, instead offset in plan to allow for the provisions of ACI 318-08 Section 13.2.5 for a drop
panel. The bays are essentially uniform in parts of the building, with an alternating long/short/long span
pattern. A small portion of the slab on the second level connecting to the existing building is lightweight
concrete on metal deck on steel framing.

The penthouse slab is 11” thick due to the larger loads present on this floor. There is an unreducible 150
psf mechanical live load present, as well as a 55 psf green roof dead load in several areas. The
mechanical floor also features a ‘floating’ four inch light weight concrete on metal deck isolation slab, to
prevent mechanical equipment vibrations from affecting other parts of the building. The roof slab is 10”
and features several large voids. This slab has post tensioned beams 36” x 24” typical for additional span
stiffness in lieu of the wide-shallow beams.

2|Page
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Foundations

Schnabel Engineering performed the geotechnical services on the JCA project. Reports indicated that for
the purposes of shallow continuous wall footings the soil has a bearing capacity of 2 ksf, with any
unsuitable conditions requiring excavation and replacement with lean concrete. Core-drilled piers
ranging in diameter from 2.5’ to 7’ are located beneath every column and support much of the shallow
wall footings. The soil report from Schnabel Engineering indicates that the core drilled piers have an
end-bearing capacity of 80 ksf and a skin friction capacity of 800 psf. The slab on grade is 5” thick and
reinforced with WWEF.
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Figure 1.1-1 Foundation Layout

3|Page
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Framing Systems

Cast-in-place columns rise from the garage level to the roof, with the four lanterns extending the extra
fourteen feet with steel framing. The column concrete has a compressive strength of 7000 psi at the
base, which is reduced to 5000 psi at level 2. Typical column sizes are 24”x24”

Each lantern has a flat roof framed in structural steel with a slight slope on the edges. HSS tubes make
up the columns, with the majority of the framing being small steel shapes with spans in the range of 5’
and typical sizes of L3x3x1/4, HSS4x4x1/4, and C6x13. In the center of the roof are several W12x40
girders with a maximum span of 33’ that are framed into by smaller wide flange shapes. These heavier
shapes are intended to carry the photovoltaic panels mounted on top of the lanterns. Several HSS
braced frames provide lateral stability to the lanterns. The lanterns were given a 30 psf dead load in the
shaded region to account for the photovoltaic panels.

Figure 1.1-2 Lantern Framing Plan
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Lateral System

The main lateral resisting elements of the JCA are the five cast-in-place reinforced concrete shear walls
that rise continuously through the building. Analysis performed in Technical Report 3 showed that the
concrete frames also had a significant contribution to resisting lateral loads on certain levels, particularly
the frames running in the North/South direction and formed by the wide/shallow beams.

ens

Tyrd

ras

Shear Walls
Wide/Shallow Beams
E/W Frames
N/S Frames

Figure 1.1-3: Lateral Elements
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Roof Systems

The roof varies in height in several locations with the floor slabs described earlier in Floor Systems. The
varying heights made snow drift a concern, and the large loads associated with the penthouse floor,
which is the heaviest floor on the building, add a significant contribution to both seismic base shear and
overturning. The green roof and pavers on the penthouse and upper roof levels lay overtop a hot
applied fluid membrane.

Design Codes
The list of Major Codes and Standards on Sheet 1.5001 is as follows:

e 2009 International Building Code

e ACI318-08

e AISCLRFD, 13" Edition, 2005

e AWSDI1.1,D1.3, D1.4, Current Edition

e ASTM, Current Edition

e Steel Deck Institute Design Manual for Composite Deck, Form Decks and Roof Decks., 2007
e ASCE 7-05 Minimum Design Loads
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Materials Used

Sheet 1.5001 was used as the reference for materials used in the construction of this project and
summarized in Tables 1.1-1.

Concrete

Usage Weight | f'c(psi)
Column (Levels 2-Rf) Normal 5000
Column (Levels G1-1) Normal 7000
Floor Slab Normal 5000
Wall Footings Normal 3000
Beams Normal 5000
Slab on Grade Normal 4500
Walls, Piers, & Pilasters Normal 5000
Drilled Piers Normal 4000
LW Concrete Fill on Deck Light 4000
Isolation Slab @ Penthouse Light 4000

Type TM Standg Grade
W Shapes A992
Plates, Angles, Channels A36
High-Strength Bolts 325 or A490
Anchor Rods F1554 36
Tubes A500 B
Pipes AS53EorS B
Reinforcing Steel A615 60
Reinforcing Steel, Welded A706 60
Roof Deck A653 A-F
Floor Deck A653 |C,D,orE
Post-Tensioned Reinforcment | A416-96
Masonry
Type TM Standg F'm (psi)
CMU C90 1500
Masonry Mortar C270
Grout C476
Aggregate C404

Table 1.1-1 Materials Used
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1.2 - Gravity Loads

This section will describe how dead, live, and snow loads were calculated and compared to loadings
given on the structural drawings. Three gravity checks were performed once the loadings were
determined for an interior column, the typical long span for the post tensioned slab, and a doubly
reinforced beam with full hand calculations available in Appendix A.

Dead and Live Loads

Dead Loads

The dead loads listed on 1.5001 shown in Figure Design Student

7 were used for the purposes of analyses. The Vegetated Roof 55 55
non-load-bearing CMU walls were assumed to be MEP/Celing 15 15
fully grouted for the purposes of worst-case load 91 pcf (Fully
calculations. The weight of the building was CMU Partitions | Actual Weight Grouted
calculated neglecting voids in slabs and with an Assumption)
assumption of 10 psf for the steel lantern framing, Table 1.2-1 Summary of Dead Loads

which would not have much effect on the building
weight were it too small an assumption. The total building weight which was used for the seismic
calculations was in the order of 28000 kips.

Based upon ASCE 7-05 the 100 psf typical live load was found to be correct, possibly for different
reasons than the designer decided for, and the 40 psf holding cell load was neglected in favor of using
the 100 psf live load in all locations except for the mechanical penthouse and the roof loading.

Design ASCE 7-05
. 80 (Corrider Above First Floor)
Typical 100 .
+ 20 (Partition) = 100
Holding Cells 40 -

Mechanical

echanica 150 150
Penthouse

Roof - 20

Table 1.2-2 Summary of Live Loads
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Snow Loads

The flat roof snow load was calculated via the method

outlined in Chapter 7 of ASCE 7-05. A discrepancy arose as

the importance factor, |, listed on the drawings had a value

of 1.0, whereas the appropriate importance factor for an

Occupancy Il building is 1.1. This led to flat roof snow load
value of 22 psf which differs from the calculated value of
23.1 psf. Curiously the design load is higher despite the

lower importance factor which may be a result of a higher
design ground snow load, though this isn’t available on the

drawings.

The varying roof levels led to eight different drift

calculations. Figure 1.2-1 and Table 1.2-4 summarize the

snow drift calculations performed.

Figure 1.2-1 Roof Snow Drift Diagram

Flat Roof Snow Load
pf =.7 CeCtlpg > 20*I

Ce 1|ASCE 7-05 Tab. 7-2
Ct 1|ASCE 7-05 Tab. 7-3
pg 25|ASCE 7-05 Fig. 7-1
I 1.1|ASCE 7-05 Tab. 7-4
pf = 0
20*I= 500
pf = 22

Table 1.2-3 Snow Load Parameters and Flat Roof Calculation

Snow Drift y= 17.25
Lu Ll hc hd Lee |hd Wind hd (ft) [w (ft) [Max psf
Drift 1 130 50 16 3.8 1.8 3.8 3.8 15.2 65.5
Drift 2 93 30.33 18 3.2 1.3 3.2 3.2| 13.0 55.9
Drift 3 70 50 18 2.8 1.8 2.8 2.8 11.2 48.5
Drift 4 70 20 21 2.8 1.0 2.8 2.8 11.2 48.5
Drift 5 70 20 14 2.8 1.0 2.8 2.8 11.2 48.5
Drift 6 38 12 14 2.0 0.7 2.0 2.0 8.1 34.8
Drift 7 21 147 16 1.4 3.0 3.0 3.0 12.1 52.0
Drift 8 83 24 52 3.1 1.1 3.1 3.1] 12.2 52.8

Table 1.2-4 Snow Drift Calculations
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1.3 — Lateral Loads

Lateral loads were calculated for the JCA in its existing location Rockville, MD. Wind loads were
calculated according to ASCE 7-05 Chapter 6 and seismic forces were calculated according to the
provisions in Chapters 11 and 12. The building was modeled in ETABS, a finite element program which
provided mode shapes and periods of vibration, which influenced the seismic loading.

Wind Force (NS)

Trib Below Trib Above Story | Overturning
Shear Moment

Base Shear (k)

Table 1.3-1 Wind Force NS Direction

Wind Force (EW)
Trib Below Trib Above

Story | Overturning
Moment

Base Shear (k)

Table 1.3-2 Wind Force EW Direction
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Seismic Forces N/S (X) Direction

Total Overturning Moment (k-ft) 58393.3

Table 1.3-3 Seismic Forces NS Direction

Seismic Forces E/W (Y) Direction

Total Overturning Moment (k-ft) 45738.0

Table 1.3-4 Seismic Forces EW Direction

Modal Information, JCA Concrete

Mode  period | |

Table 1.3-5 Modal Information JCA As Designed
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1.4 —Proposal/Problem Statement
Structural Depth

The current reinforced concrete building, with post-tensioned floor slabs and cast-in-place shear walls
was analyzed in three previous technical reports and found to be adequate in all respects. It is
hypothesized however, that with no height restrictions, converting the building to steel would be a
competitive solution.

The conversion to steel will mean changing the floor system to concrete on metal deck, employing
either the composite metal deck construction with light weight concrete that was explored in Technical
Report 2 or a more cost effective deck should one be found. The gravity system will be designed based
upon the loading outlined in Technical Report 1, with the initial framing based upon existing locations of
columns, though this may need to be adjusted as the design is further developed. Composite steel
beams and girders will be used to take advantage of the slab strength so that smaller member sizes can
be employed.

After the initial framing has been completed lateral loads will be recalculated using ASCE 7-05 prescribed
procedures. Braced frames are proposed to replace the existing reinforced concrete shear walls, acting
in their stead as the lateral system of the JCA. As with the columns, the initial trials will use the locations
of the shear walls to place the braced frames, to minimize architectural impacts and due to the
symmetrical layout that did not have torsion issues as reported in Technical Report 3.

Once both gravity loads and lateral loads have been recalculated the existing foundation system will be
investigated to see if it can be reduced to a more efficient solution.

As seismic design is of particular interest to part 2 of the proposal will involve moving the building to San
Francisco where it will be in Seismic Design Category D. The system will be kept as steel braced frames
and the lateral system will be redesigned for the larger seismic loading.
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Breadth Study One: Cost and Schedule Analysis

Breadth One will explore a common question in today’s industry, “Concrete or Steel?”, by evaluating the
impacts that changing the system will have on the overall cost and schedule of building. Often designers
will push one concrete and one steel solution deep into the design phase before one ends up being
chosen, a scenario being emulated by the Structural Depth. The object here is to see if the redesign will
lead to a cheaper, faster to construct building that performs on par with the concrete design, and
determine if steel was truly a feasible solution for this project. This depth requires that a schedule be
established for both the existing construction and the redesign and that both options be priced based
upon their materials, associated construction costs, and schedules; the better option will therefore be
based upon which structure is completed quicker and for less cost. The critical path of the building will
be reevaluated and the cost impact of schedule days included in the evaluation of both systems.

Breadth Study Two: Sustainability

The JCA has achieved a LEED Gold rating which was in part made possible by the sustainable rooftop
features. There is approximately 6000 sq ft of green roof as well as photovoltaic panels on the various
levels of the roof. It was thought that perhaps utilizing the entire space for PV panels could prove more
beneficial. Therefore a life cycle analysis would be performed on both systems, taking into account
payback period, carbon output and other factors.

Additionally a comparison of their LEED impacts would be evaluated as well. Areas of possible
improvement in LEED rating not related to the green roof and PV panels would also be explored. A
summary of the findings will be provided.
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Chapter 2 — Structural Depth

The Judicial Center Annex is a reinforced concrete structure located in Rockville, MD. As the building is
owned by Montgomery County normal height restrictions have been waived and the building features
larger than typical floor to floor heights. A typical advantage of concrete construction is the thinner
structural framing which allows either for additional floors in a given height or a height reduction for a
given number of floors, allowing for more profitable space or less building envelope for the owner of the
building.

For this reason it is thought that, despite being an area typically dominated by concrete construction, a

design in steel would be a competitive solution. The proposal is therefore to perform a system redesign
of the JCA using steel framing. The floor slab will be converted from post-tensioned to a composite slab
on metal deck. Gravity members will be designed as composite in an effort to keep the framing shallow.
The lateral system which was made of shear walls will be converted to braced frames.

The new structural system is anticipated to be much lighter than the existing system. This makes it likely
that wind will control the design which was previously dominated by seismic. As seismic design is of
particular interest to the author a further step was proposed for the structural design. The building will
be ‘moved’ to San Francisco, CA. The west coast is well known for its greater seismicity, so making this
move will result in an exploration into seismic design.

2.1 - MD Gravity Design

For this redesign it was attempted to leave the architecture and layout of spaces as unchanged as
possible. The structural grid was therefore kept largely unchanged, choosing to keep column locations
intact and to work around the existing building. Figure 2.1-1 shows the finalized structural grid with the
girders running in the North/South direction. The original thought was that economy could be achieved
as the smaller bays on either side of the typical design bay shown in the figure would not require an infill
beam and therefore there was the potential for fewer beams. Also of note is that one column was
moved and one column was added to the layout as highlighted in Figure 2.1-1. In both cases the
architectural plans were checked to ensure that it was possible to do so with little or no impact.

RAM Structural was the primary software used for the design of the gravity system, and with the ability
to easily change the framing and determine if the earlier hypothesis was in fact more economical two
RAM models were created with girders running in either direction. As hypothesized the N/S girder
design was more economical in terms of steel tonnage, though it turns out less pieces were used
framing it in the E/W direction. In order to accommodate the 12’ bays with no infill beams the deck
selected was 2VLI18 to allow for un-shored construction which would have the potential for cost
savings. This was increased to a 3VLI16 for the penthouse level. The gravity design was compared to the
typical bay designed by hand as well as a gravity check in ETABS. The numbers were all found to be
satisfactorily close. Appendix D contains the hand check.
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1114 25 BF 2 4 - Typ. Bay for Design 881 88
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Figure 2.1-1 Steel Gravity System Layout
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Typically steel results in larger floor-to-floor heights then concrete due to deeper gravity framing. The
steel as designed resulted in some girders and cantilevered beams being as deep as 30” for a typical
floor, which combined with the slab led to nearly a 1.5’ increase from the concrete framing. Therefore it

was important to investigate to the plenum space to determine if a height increase was required.

Additionally this is an addition onto an existing building which required the Terrace, 1st, and 2nd levels

to remain at the same level. The mechanical and architectural plans were investigated, looking for
typical ceiling heights and the largest ductwork. Sections revealed that the deepest ducts rarely
surpassed 20” which could be accommodated by the general 4.5’ existing plenum even with the

increase in member depth. Large duct runs also ran parallel to the girders meaning that the worst case
ductwork ran under shallower beams. To ensure that this would not be a problem and to provide more
clearance at the garage level beams were limited to W24’s. The courtroom spaces on the 3rd through
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5th levels, while not featuring large ductwork, were of concern so these levels were increased by 6”
each resulting in an overall building height increase of 1.5’.

2.2 - MD Lateral System & Foundation Design

The first step of the lateral system redesign was recalculating the lateral wind and seismic loading. As
the building system had changed markedly the weight of the structure needed recalculating to
determine the new seismic loads. The wind load was also recalculated, though the 1.5’ increase in
height did not make a large difference. The terrace level was used as the seismic base.

Seismic

The weight of the building was recalculated to approximately 15500 kips. This meant that the building
mass affecting the seismic forces had changed from approximately 160 psf to 80 psf. The Equivalent
Lateral Force Procedure as detailed in ASCE7-05 section 12.8 was used to calculate story forces that
would represent the inertial response of the building due to seismic loading. The seismic parameters
are shown in Table 2.2-1 and the story forces and shears are shown in Table 2.2-2.

Seismic Design Parameters

| 1.25
R 3
SDs 0.1664
SD1 0.0816
Ct 0.02
X 0.75
hn 114
Ta 0.707
Cu 1.7
T 1.202
SDS/(R/1) |SD1/(T(R/1))
Cs 0.069 0.028
W (kips) 15448
V (kips) | 437

Table 2.2-1 Seismic Design Parameters
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Seismic Forces, Both Directions

Level Story Ht | Story Weight Cux Story Shear Overturning

(ft) (k) Force (k) | Shear (k) | Moment (k-ft)
1 15 2133.8 0.033 14.5 441.3 218.1
2 29 2130.8 0.064 28.1 426.8 813.7
3 445 2177.3 0.100 44.1 398.7 1962.1
4 61.5 2207.1 0.140 61.9 354.6 3804.1
5 78.5 2207.1 0.179 79.0 292.8 6197.9
PentHouse 95.5 3207.8 0.328 144.9 213.8 13839.7
Roof 114.5 1383.7 0.156 68.9 68.9 7889.9
Base Shear (k) 441.3
Total Overturning Moment (k-ft) 34725.6

Wind

Table 2.2-2 Seismic Story Forces and Story Shears

Method 2 of the Main Wind Force Resisting System (MWRFS) procedure detailed in ASCE7-05 chapter 6

was used to calculate the wind forces the building would see. The building was idealized as a rectangle
for simplicity and the lanterns were excluded from the calculation as they represent a relatively small

area compared to the rest of the building. Tables 2.2-3 through 2.2-8 summarize the wind calculations.

Wind Load Criteria

Velocity Presssure Coefficients (Kz) and
Velocity Pressures (qz)

Gepi 0.18 |[ASCE 7-05Fig. 6-5
Exposure B ASCE 7-056.5.6.3
V 90 mph |ASCE 7-05 Fig. 6-1C
I 1.15 |[ASCE 7-05Tab 6-1
Kzt 1 ASCE 7-056.5.7.1
Kd 0.85 [ASCE 7-05Fig. 6-4

Table 2.2-3 Wind Load Criteria

Height |Kz qz
1st 15 0.570 11.55
2nd 29 0.692 14.03
3rd 44.5 0.783 15.87
4th 61.5 0.856 17.35
5th 78.5 0.924 18.73
Penthouse 95.5 0.982 19.90
Roof 114.5 1.026 20.80

Table 2.2-4 Kz and gz Values
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Design Wind Pressure N/S
Internal Pressure Net Pressure

Distance Wind Pressure

(+) Gepi [(-) Gepi  [(+) Gepi [(-) Gepi

Windward
leeward | Al | - | 874 | 374 | 374 | -1248 | -5.00 |

Side Walls

Roof | 0-50 | 1819 | 374 | 374 | -21.93 | -14.45 |

Table 2.2-5 Design Wind Pressure in the North/South Direction

Design Wind Pressure E/W

Internal Pressure Net Pressure
(+) Gepi |(-) Gepi  [(+) Gepi [(-) Gepi

Distance Wind Pressure

Windward
leeward | Al | - | 813 | 374 | 374 | -11.87 | -439

Side Walls

Roof || 0-50 | 1676 | 374 | 374 | -2050 | -13.01 |

Table 2.2-6 Design Wind Pressure in the North/South Direction
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Wind Force (NS)

Trib Below Trib Above Story | Overturning
Shear Moment

Base Shear (k)

Table 2.2-7 Wind Story Forces and Story Shears in the North/South Direction

Wind Force (EW)

Trib Below Trib Above Story | Overturning

Moment

Base Shear (k)

Table 2.2-8 Wind Story Forces and Story Shears in the East/West Direction

The seismic forces were still found to generate a higher un-factored base shear. It can be seen though
that the strength design of the structure will in general be controlled by the wind forces. Seismic will
likely control drift as it will be modified by Cd/I and drift due to wind can be reduced by a factor of 0.7
according to ASCE7-05 load combination CC-3.
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Braced Frame Design

As shear walls were previously used these same spaces would easily be able to accommodate a
concentrically braced frame. A concentrically braced frame is a system in which the members resist
lateral loads in the elastic range primarily through axial forces in the members. The members are
connected with little or no eccentricity which creates a very stiff and efficient system. As the JCA was
located in Seismic Design Category B the frames were designed as Ordinary Concentrically Braced
Frames (OCBF) with an R = 3 to avoid special detailing requirements.

77 77 (i i 77

Figure 2.2-1 Concentrically Braced Frame Configurations, Source: structuremag.org

Before modeling the building in ETABS, preliminary layouts and sizes were determined. Sizes were found
assuming a percentage of the base shear that frame would see and assuming the brace would take all of
the force. Braced frames 4 and 5 had a central doorway on almost every level which necessitated the
usage of an inverted V, or Chevron, configuration to accommodate this. The chevron configuration was
explored for the other braced frames as well. The initial thought was the shorter unbraced length of the
column would prove beneficial in increasing Fcr and the capacity of the bracing members. However, the
larger angle caused the axial component of the shear that the brace would experience to be much larger
in the chevron configuration which negated this previous advantage. The chevron would also mean an
additional piece which would require connections for both ends which would drive the cost up. Table
2.2-9 shows a frame that is representative of previously described comparison. Braced members were
chosen to be square HSS tubes whenever possible. Their shape makes them efficient in compression
because they have no weak axis and are easy to connect.

Brace Configuration Comparison

Member Wit L Connections Pieces [Equivalent Wt.
Chevron HSS7x7x3/8 32.6 42.8 4 2 2195
Diagonal |HSS8x8x1/2 48.8 31.1 2 1 1918

Table 2.2-9 BF 1, Story 5 Brace Economy Comparison
*Note: Connection assumed equivalent to 200lbs of steel
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I E/W Braces 2 and 3
Il Chevron Braces 4 & 5 :
I Brace 1

—1.

T

Figure 2.2-2 BF Layout

ETABS, a finite element program, was used to model the structural system. Only the lateral system was
modeled, which is an acceptable simplification. Centerline modeling was used and since connections
were modeled as pinned (no moment frames) Panel Zones were not explicitly modeled and a rigid end
offset factor was kept as 0. The diaphragms were modeled as rigid and the mass of each story was
assumed lumped at the respective diaphragm. The X-direction in the model corresponds to the N/S

direction in plan.

MD Modes and Participating Mass

Mode Period UX Uy
1 2.61 3.67 59.94|Y-Translational
2 2.45 35.82 8.69|Z-Rotational
3 2.02 32.10 0.23|X-Translational

Table 2.2-10 Mode Shapes and Participating Mass

Table 2.2-10 shows the building period for the first three modes. The number seems unusually high
which may be a result of a very flexible system. As the periods for the motion in both the X and Y
directions were found to be greater than Cu*Ta the seismic forces required no adjustment.
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The initial sizes were downsized as much as the strength design would allow, but drifts still easily passed
the requirements. Tables 2.2-11 through 14 show the worst case seismic and wind drift for both
directions.

Amplified by Cd/I
Story |Height| oxe | dye bx | oy Ax

| Aa =.015sx

| Penthouse | 1850 | 203 | - | 528 | - | 107 | - | 333
| level4 | 1800 | 121 | - | 315 | - | 107 | - | 324
| level2 | 1550 | 046 | - | 120 | - | o7 | - | 279

Terrace 11.50 0.02 - 0.05 - 0.05 - 2.07
Table 2.2-11 Deflection and Story Drift Due to Seismic Forces Applied in the N/S + Eccentricity

Amplified by Cd/I
Story |Height| bxe | dye ox | Sy Ax | Ay

Aa =.015sx

 Penthouse | 1850 | - | 223 | - | 58 | - | 127 | 333
| leveld | 1800 | - | 124 | - | 32 | - | 117 | 324

| level2 | 1550 | - | o040 | - | 104 | - | 073 | 279

Terrace 11.50 - 0.02 - 0.05 - 0.05 2.07

Table 2.2-12 Deflection and Story Drift Due to Seismic Forces Applied Directly in the E/W Direction
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Aa = H/400
| Ay

Story |Height| Sxw | Syw | Ax

Penthouse | 1850 | 15 | - | 028 | - | 056 |
| leveld | 1800 | 093 | - | 029 | - | o054 |
| level2 | 1550 | 037 | - | o2 | - | 047 |

Terrace 11.50 0.01 - 0.01 - 0.35

Table 2.2-13 Deflection and Story Drift Due to Wind Forces: Wind Case 2 N/S Direction, Positive Eccentricity

Aa =H/400

Story |Height| Sxw | Syw | Ax | Ay

 Penthouse | 1850 | - | 206 | - | 044 | 056 |
| level4 | 1800 | - | 120 | - | 041 | 054 |

| level2 | 1550 | - | 041 | - | 028 | 047 |

Terrace 11.50 - 0.01 - 0.01 0.35

Table 2.2-14 Deflection and Story Drift Due to Wind Forces: Wind Case 2 E/W Direction, Negative Eccentricity
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of Safety. The gravity column loading from RAM and the lateral loads on the columns integrated into the

Because the system was significantly lighter a foundation redesign was considered. The Geotech report
well as a skin friction value of 800 psf. These allowances were assumed to already account for a Factor

provided by Schnabel Engineering, Inc. gave an end-bearing value of 80 ksf for the core drilled piers, as

Schnabel’s recommendation. The pier sizing is shown in Appendix H.

braced frames were then used to re-size the core drilled piers
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Summary

The braced frames were able to adequately replace the former shear wall system. Torsional
irregularities were not considered in the scope of the first part of this depth as it is not required in SDC
B. The weight in steel of the redesign came in at 9.9 |bs/sq ft, with 15% of that accounted for by the
lateral system. Figures 2.2-5 through 2.2-8 show the elevations of the braced frames with the sections.
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2.3 — CA Lateral Design, Layout 1

The second phase to be investigated for the structural depth is the move to a region of greater
seismicity, which in this case was arbitrarily chosen as San Francisco. Assuming Site Class D the Seismic
Design Category increased from B to D. The change in SDC results in a host of provisions from ASCE7-05
needing accounted for that did not previously apply.

One such factor is p, the redundancy factor, which drove the seismic exploration. ASCE7-05 section
12.3.4.2 requires that the horizontal and vertical seismic load effects be multiplied by 1.3 unless stories
which resist more than 35% of the base shear do not face a 33% strength reduction by the removal of an
individual brace or develop an extreme torsion irregularity due to this removal. The current layout
would not have a chance of earning this as in the East/West direction there are two frames, so removing
one brace would drop the strength by 50%. To remedy this frames would be added in an effort to keep
p =1, but for comparison purposes the braces would be sized using the layout from Rockville initially.

Seismic

The move to SDC D resulted in a large markup in seismic forces as seen in Table 2.3-1. This also meant
that the OCBF could not be utilized and the system would need to be changed to a Special Concentrically
Braced Frame, SCBF, which results in an R=6. The cost of the increased ductility comes in the form of
special detailing requirements and seismic provisions that will be discussed more during the frame
design section.

Seismic Designh Parameters

[ 1.25
R 6
SDs 1
SD1 0.6
Ct 0.02
X 0.75
hn 114
Ta 0.70
Cu 1.7
T 1.19
SDS/(R/1)  |SD1/(T(R/1))
Cs 0.208 0.105
W (kips) 15448
V (kips) | 1623

Table 2.3-1 Seismic Parameters
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Due to the large loading it was thought prudent to invoke ASCE7-05 section 12.9 and perform a Modal
Response Spectrum Analysis. The number of modes used was dictated by having over 90% modal mass
participation in both directions. Section 11.4.5 was used to determine the design spectrum as shown in
Figure 2.3-1, and the response parameters were combined using square root of the sum squares
method, which is included in Appendix J. The resultant base shear in both directions was limited to a
reduction of 85% of the base shear calculated using the Equivalent Lateral Force Procedure. Table 2.3-2
shows the revised lateral forces the building experiences do to seismic response.
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Figure 2.3-1 Design Response Spectrum, ASCE7-05

Seismic Forces, Both Directions

Total Overturning Moment (k-ft) 108874.1

Table 2.3-2 Seismic Parameters
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Wind

The design wind velocity for California is reduced from 90 mph to 85 mph. As the geometry of the
building is assumed unaffected by the move this resulted in seismic controlling both strength and drift
design by a large margin. The design wind forces can be seen in Tables 2.3-3 and 2.3-4.

Wind Force (EW)

Moment

Base Shear (k)

Table 2.3-3 Wind Forces, EW Direction

Wind Force (NS)

Trib Below Trib Above Story | Overturning
Shear Moment

Base Shear (k)

Table 2.3-4 Wind Forces, NS Direction
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Braced Frame Design

As before preliminary sizes were chosen on assuming a frame stiffness and sizing the braces for the
entire story shear that brace would potentially see. As braced frames are now SCBF other provisions
applied per AISC 341-05: Seismic Provisions for Structural Steel Buildings. Several provisions in particular

are of note.

e 13.2a Slenderness — Bracing members shall have Kl/r < 4\/TF3,
O This meant that the largest HSS shape possible was a 12x12x5/8 and that W Shapes
would need employed
e 13.3 Required Strength of Bracing Connections

Tensile Str = RyF,A; Compr Str = 1.1R,,P, Flexural Str = 1.1R, M,

0 In a SCBF system the energy dissipation is assumed to occur through tensile yielding and
buckling of the bracing members, whilst the rest of the system remains elastic. To
achieve this connections must be designed to withstand larger forces than in an OCBF

e 13.4aInverted V-Type Bracing — For loading acting on the member
Brace Tensile Str = R, F,A,, Compr Str = 0.3F,

0 Inverted V-Type connections are typically avoided in seismic regions due to the
unbalanced compression and tensile forces that are developed in the braces. This
causes potentially damage due to large midspan deflections unless properly accounted
for. As a result the beam must be oversized to deal with this unbalanced load and can
become extremely large, negatively affecting the building in terms of framing depth and
cost of steel.

Unlike Maryland, the chevron configuration is extremely undesirable in this higher SDC. Due to the
geometry however, the chevrons were kept in braced frames 4 & 5. The beam was sized and the brace
to beam connection designed based upon the above factors to satisfy MAE requirements. Figure 2.3-2
shows the connection details.

Strength design drove the member sizes initially as the redundancy factor led the braces to see 30%
more force. Once strength design was found adequate the building was checked for torsional
irregularities. Table 12.3-2 of ASCE7-05 defines a torsional irregularity as when the maximum story drift
of a level exceeds 1.2 times the average. Initial findings denoted that the design was irregular. This
invoked section 12.12.1 which stated that the story drift now had to be taken as the largest different
between the edges at the top and bottom of the story under consideration rather than the center of the
diaphragm. Drift levels failed considerably at this point, and an effort was made to control the torsion
such that the center of the diaphragm displacements could be considered for story drift. The end story
drifts are summarized in Table 2.3-5 and 2.3-6.
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F (2) 3/8” x3 %" PL / W33x354

I

|

TYP.
3/8 ‘ )

17 PL 1/4 TVP.
\ 1/4
A
HSS8x8x \\\ AN
5/8”x51/4” PL \
N
TYP N\

3/8
+ Gap

Figure 2.3-2 Designed Chevron SCBF Brace to Beam Connection

Torsional Irregularity X Direction

_teveld | 212 | 143 [ 1775 | 119 | o074 | oso | o6 | 12 | 09 |
_tevel2 | 08 | o054 [ o67 | 119 | o045 | o031 | o038 | 12 | 09 |

Table 2.3-5 Torsional Irregularity Check X Direction
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Torsional Irregularity Y Direction

| story | Smax_| 6min_| Gavg | smax/Gave Amax/Bavg | |

| tevel2 | 09 | 055 ] o7s | 124 | o051 | 025 | o038 | 11 [ 107 |

Table 2.3-6 Torsional Irregularity Check Y Direction

Summary

Difficulties controlling story drift resulted in very large members. The virtual work feature embedded
within ETABS indicated that the lower story columns contributed the most and therefore these were
typically targeted rather than upsizing the braces adequate for strength conditions. To accommodate
the new seismic forces the weight of steel in the lateral system increased by a factor of 2.2, bringing the
weight of steel per square foot in the building to 11.7 Ibs.

Modal Information, CA Layout 1

| Mode | Period | ux | wv |

Table 2.3-7 Modal Information
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2.4 - CA Lateral Design, Layout 2

The first lateral design seemed rather inefficient due to the low number of braces. It was hypothesized
that a more efficient design could be achieved (less steel tonnage) by adding frames, which would also

allow a p = 1, creating less strength demand on the structure. Three areas were highlighted for addition,
two in the EW direction and one in the NS direction. The addition would remove 4 parking spaces of the
available 60 which was deemed an acceptable impact. An additional column was added as well, to avoid

a beam cantilevering from the weak axis of a column involved in Brace Frame 8.

BF 4 l BF5
T T - ﬁ -
BF7
BF 2
BF 6 BF1
1 1 1 ¢

1,12 182 26 28 (33639 42 43 45 48 495 662 65

Figure 2.4-1 BF Layout

In order to use p = 1 two requirements needed to be met. The first was the confirmation that losing a

N

BF3 B2

BF 3

BF 8

AS

Existing Frames

G

Addgg Frames

brace would not cause the story to lose more than 33% of its strength. Table 2.4-1 shows the brace

strengths and percentages per floor for the two orthogonal directions. Additionally it needed proved

that extreme torsional irregularity was not encountered when a brace was removed on a given level. To
accomplish this each brace was deleted one by one, the model run, and the results viewed. This data is

included in Appendix N. Both conditions were satisfied.
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Figure 2.4-2 ETABS Model of CA Layout 2

Strength Summary
EW Direction

BF 2 BF 3 BF 7 BF 8

NS Direction
BF 4 BF 5 BF 1 BF 6

Table 2.4-1 Brace Strength Summary
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Summary

Similarly to Layout 1, drift caused members to be upsized from the preliminary sizing. Minimal steel
tonnage was saved, which may be offset by the cost of the additional connections for the bracing
members and shipping related to the increased number of pieces involved. Layout 2 had a steel weight
of 11.6 psf, but dealt markedly better with torsional issues. Appendix P contains the braced frame
elevations for this layout.

Modal Information, CA Layout 2

Mode Period UX uy
1 1.60 0.00 70.84|Y Translational
2 1.48 73.12 0.00{X Translational
3 1.15 0.04 1.41|Z Rotational

Table 2.4-2 Modal Information CA Layout 2
2.5 CA Lateral Design, Layout 3

Earlier it was noted how chevron frames are typically avoided in seismic applications do to the large
beams necessary for the system to perform properly. It was seen that of the 331 tons of steel used for
Layout 2’s lateral system over 25% of this could be attributed to the beams in the chevrons of frame 4
and 5. Therefore it was decided to investigate an Eccentrically Braced Frame, EBF. Eccentrically braced
frames resist lateral forces through shear, flexure and axial forces in members, and are a hybrid of
braced frame and moment frames, approaching the stiffness and ductility of each system respectively.
In an eccentrically braced frame the brace intersects the beam/column or beam/brace centerlines on
one end with the other end intersecting a distance, the eccentricity, away from the centerline. The “link”
section of the beam helps the system dissipate energy through shear and is typically the focus of the
design. Because EBF’s offer greater ductility they have a higher R value, however the SCBF R value would
still control. For this study the braced frames were chosen to have non-moment resisting (shear)
connections at columns away from links.

The design provisions of particular interest from AISC 341-05 are as follows:

e 15.2a Limitations — Web of a link shall be a single thickness
0 The design of the beam will rely on balancing the shear strength vs. shear demand of
the link versus the moment demand on the exterior beam. This provision states that
doubler plates are not permitted to increase the shear strength of the link as this is the
portion of the system intended to experience inelastic behavior.
e 15.2c Link Rotation Angle — The link rotation shall not exceed 0.08 radians for links of length
1.6M,, /V;, or less
0 Links less than this length are dominated by shear yielding, which is an effective means
for energy dissipation. The link rotation angle is the angle between the link beam and
beam outside the link at the design story drift.
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The eccentric braced frame designed resulted in a W18x86 shape being used as opposed to the
W33x354 that was used for the SCBF. Figure 2.5-1 shows the beam design including detailing.
Connections are purely schematic, but they adhere to the provision which prevents the any part of the
connection from entering the link portion of the beam.

” yn ” yn ”
(2) 3/8” x5 %" x51/8 %" x 10” x W18x86

1/8” Link Intermediate 36” A36
Stiffener | Web Stiffener /  CoverPL \

<_‘L
HSS 9x9x5/8 Brace <\
Figure 2.5-1 Eccentric Braced Frame Beam Design
Summary

The replacement of the chevron SCBF’s with EBF’s proved very beneficial. The frames were more
flexible, but despite increasing the bracing to HSS9x9x5/8 from HSS8x8x1/2 the new layout saved
approximately 70 tons of steel, resulting in a total steel weight of 10.9psf for the building.

Modal Information, CA Layout 3

Mode Period UX Uy
1 1.60 12.26 58.04|Y Translational
2 1.57 61.07 12.86|X Translational
3 1.16 1.10 1.81|Z Rotational

Table 2.5-1 Modal Information CA Layout 3
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2.6 - MAE Requirements

Throughout the structural redesign graduate level coursework was applied. AE 597A — Computer
Modeling was relied upon extensively. The complexity of designing a building is drastically reduced by
the ability to create finite element models of the structure of concern. This is not to say that the
program does all of the work, because to get accurate results one must accurately model and
understand the proper assumptions to make. This course provided background knowledge relied upon
heavily to create the four different iterations, as well as the original concrete structure.

AE 538-Earthquake Engineering provided many general concepts and design tips for the structure when
it was moved to the region of high seismicity. Prior knowledge of code provisions and experience with
seismic design were of paramount importance.

The SBCF and EBF details were done by hand using concepts introduced in AE 534 — Steel Connections.
The brace to beam connection in particular was of difficult geometry that needed careful thought to
complete.

2.7 - Summary

In conclusion it was found that the steel redesign in Rockville could be accommodated with minimal
impact to the height and layout of the building. The building also remains almost completely
architecturally unaffected as well, accept for the addition of beams to the Eastern elevation which
features a 14’ cantilever.

The move to a higher seismic region proved to be more challenging to make the system work. The
addition of braces reduced steel tonnage, though it would not necessarily have reduced the cost due to
the additional shipping and connections required. A factor not directly evaluated, the foundations, may
make Layout 2 more economically viable over Layout 3 as p would be applied to the foundation design.
Layout 2 also had less torsional problems, and would be preferred due to the redundancy in the system.

What proved to be the most beneficial was the conversion of the chevron SCBF to EBF which dropped
the steel tonnage by 21%. A summary of the system weights and estimated costs are shown in Table 2.6-
1. Factors not considered would be the design of diaphragm collector elements to channel the load into
the braced frames, which would likely increase the cost of the system as a whole and change certain
gravity elements.

Steel Designs

MD CA1l CA2 CA3
Steel Tonnage 154 339 331 261
Est. Cost $ 511,808.30 [ S 1,085,139.94 [ S 1,072,457.85 | S 851,582.56

Figure 2.7-1 Steel Design Summary
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Chapter 3 — Construction Management Breadth: Cost and Schedule Comparison

Due to the changes made in the substructure and superstructure of the building it was of interest to
determine impacts made to both the cost and the schedule of work. The changing height of the building
was taken into account by increasing the cost of the building skin proportionally to the height
adjustment. While finished floor to ceiling heights were maintained, meaning a possible zero impact to
interior finishes and partitions, the CMU and gypsum assemblies were similarly adjusted.

As the original concrete structure would likely require adjustments to meet the demands of a higher
seismic design category, and this redesign was not considered in the depth, it was only pertinent to
compare cost and schedule of the original structure in Rockville, MD to the redesign that was performed
in this location.

Original costs and schedules were provided courtesy of AECOM and Tompkins Builders, Inc.
3.1 -Cost

As the buildings substructure was changed from concrete to steel construction the new prices for the
materials had to be tallied and compared. The lighter system also warranted a foundation redesign
driven by the smaller column loads present upon the drilled piers. The slab on grade and basement walls
was left unchanged. Table 3.1-1 below displays the original estimate as compared to the costs compiled
through using RS Means 2011 data for the newly designed system. A detailed cost estimate and the
original cost estimate are provided in Appendix R.

Cost Comparison

As Designed ReDesign
Super Structure Value Value Adj for
0&P

Cast-In-Place Concrete | $ 6,281,783.00
Structural Steel S 1,784,892.00

$ 1,839,890.40
S 5,726,574.58

Substructure
Drilled Piers [$  953,320.00 | $  510,787.59

Exterior Enclosure

Arch. Precast S 598,000.00 S 609,960.00
Metal Wall Panels S 2,125,533.00 S 2,168,043.66
Curtain Wall S 6,456,000.00 $ 6,585,120.00
Interior Glass (CW) S 683,223.00 S 696,887.46
Louvers & Vents S 38,167.00 S 38,930.34

Interior
Masonry S 1,801,768.00 S 1,837,803.36
Gypsum Board S 3,559,255.00 S 3,630,440.10
Comparison I $24,281,941.00 $23,644,437.49
Savings | S 637,503.51

Table 3.1-1 Cost of Old System Compared to Redesign
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The estimated savings on the structural system were approximately $0.64million, offset to the number
shown in the table by the cost increase of the shell and certain interior elements. This number seems
high considering Rockville is in an area typically dominated by concrete, but several factors need
considered. The large story heights present in the building allowed steel to be implemented with little
adjustment. This meant that the cost of extra building skin was not as impactful as is typical in a cost
comparison of the two materials, and also meant an increase in the amount of concrete and reinforcing
and associated costs due to the higher floor to floor heights. If the building height had to be increased
by 10’, which may have occurred were the floor heights more conventional, the increase in the building
skin alone would be $1 million. A typical cost for the building superstructure is in the order of 10%. As
shown in Table 3.1-2 the superstructure is slightly higher than normal, which may be a combination of
the large floor heights and the large cantilevered portioned of the slab on the East Elevation.

Percentage Breakdown of Building Costs

Original Cost | % Total | Redesign Cost | % Total
Shell
Super Structure S 8,066,675.00 12.9%| S 7,566,464.98 12.3%
Exterior Enclosure | $ 9,900,923.00 15.9%| $10,098,941.46 16.4%
Roofing S 965,381.00 1.5%| S  965,381.00 1.6%
Subtotal Subtotal
$62,332,586.00 $61,695,082.49

Table 3.1-2 Cost Breakdown

3.2 - Schedule

An advantage steel construction has over concrete is typically in the duration the building structure
takes to build. A schedule was compiled using RS Means 2011 for the newly designed structure and the
original schedule as a reference and then compared to the original schedule. Foundations, while
reduced in size, were assumed to take the same duration as the number of drilled piers was increased
from 71 to 73. Exterior skin and roofing schedules were similarly assumed to remain consistent with
those from the original schedule.
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Task Name

Duration Start Finish Predecessors

|June 1 ‘Januarvl |August

424 | 8/7 .[ 11/20| 3/4 [ 6/17 | 9

Foundations 82 days Thu 11/17/11 Fri 3/9/12 T—'
Area 1 NW 63 days Mon 11/21/1:Wed 2/15/12 (p——
Area 2 NE 58 days Wed 11/30/1:Fri 2/17/12 P—
Area 3 SW 70 days Thu 11/17/11 Wed 2/22/12 P—
Area 4 SE 73 days Wed 11/30/1:Fri 3/9/12 P—
Building Structure 99 days? Tue2/28/12 Fri7/13/12 P——
Column Lift One 3 days Tue 2/28/12 Thu3/1/12  25FF+1 day s
Terrace Level 28 days Tue 2/28/12 Thu4/5/12 —
Level 1 33 days Tue 3/6/12 Thu4/19/12 ="y
Level 2 38 days Tue 3/13/12 Thu5/3/12 =
Column Lift 2 4 days Thu 4/12/12 Tue 4/17/12 48FS+2 days I
Level 3 31 days Thu 4/12/12 Thu5/24/12 —y
Level 4 36 days Thu 4/19/12 Thu6/7/12 -
Level 5 41 days Thu 4/26/12 Thu6/21/12 L o
Column Lift 3 3 days Tue 5/29/12 Thu5/31/12 70FS+2 days I
Penthouse 31days? Tue5/29/12 Tue 7/10/12 [ o
Upper Roof 15 days Mon 6/25/12 Fri7/13/12 o
Stair 1 25 days Thu 3/8/12 Wed 4/11/12 ve
Exterior Skin 87 days Tue 6/19/12 Wed 10/17/1. Pr—

Figure 3.2-1 Redesign Schedule

Figure 3.2-1 above shows the redesign schedule from Microsoft Project. Total project duration was

decreased by a month due to the material change. The end date for the exterior skin originally was

dated for 11/16/12 but it is estimated that with a steel structure this can be dropped to 10/17/12. The
amount of work days required to complete the building structure was reduced from 161 days original

estimated to 99 days which may have the potential to cause a larger impact on areas of the schedule

that were not considered in the scope of this analysis, such as work done upon the interior.

3.3 - Summary

The results of the findings in the cost and schedule analysis are summarized in Table 3.3-1. The

scheduled construction time was reduced by a month, which potentially larger impacts due to the

completion of the structure 62 work days ahead of the estimate for the concrete construction.

Cost/Schedule Summary

Original Redesign
Schedule |9 months 8 months
Cost $24,281,941 | $23,644,437

Table 3.3-1 Cost/Schedule Summary
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The building cost associated with the changes made was also found to be reduced by $1.2 million. Due
to the unusually large floor to floor heights, in part present to accommodate the attachment to an
existing structure, may have made steel such a competitive choice with regards to concrete in this
application. While location factors were accounted for in the usage of RS Means, the fact that in this
area concrete construction is typical may have led to cost increases in steel design not fully accounted
for. Table 3.3-2 shows the factors looked at by the AECOM team when choosing a structural system,
two of which that were highlighted being the cost and the experienced bidders. As was discussed earlier
in Chapter 2 it is believed that vibration would not be as large a factor due to the irregular bay sizes and
that the framing depth could be overcome with careful attention to coordination.

Structural System Comparison Chart

Composite PT Concrete Concrete Ranking
Steel | Skip Joist Factor
Cost 2 3 1
20 30 10, 10
Vibration 1] 3 2
7] 21 14 7
Ease of Future 3 1 2
Modification 24 8 16 g
Weight of Structure 3 1 2
(Fdtion Savings) 6| 2 4 2
Same Subcontractor for 1] 2 3
Whole Structure 2] 4 6 2
Smallest Column Size 3 1 2
6| 2 4 2
Commonly Constructed 3 2 1
System with Many 18] 12 6 6
Experienced Bidders
Structural Framing
Depth ! 3 2
5 15 10, 5
Fire Protection 1 3 2
5 15, 10 5
Total | 18| 93 19| 109| 17| 80|

Table 3.3-2 AECOM System Comparison

In summary it would appear that steel could be a very competitive alternative to concrete in this
situation in terms of building cost and schedule, though limitations in cost knowledge make it unclear
exactly how competitive.
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Chapter 4 — Sustainability Study

The rooftop of the Judicial Center Annex has a distinct, multi-tiered shape that gives the building
architectural character. It was also an area that the designers took advantage of to provide sustainable
energy features that allowed the addition to gain LEED Gold accreditation. Between the penthouse and
the lower roof the building features 6270 square feet of extensive green roof as well as photovoltaic
panels installed on top of the lantern structures as can be seen in Figure 4-1.

walel | ‘ » Lantern PV
N ,, | ~ [ et

- Low Roof Green Roof

- Penthouse Green
: — P Roof, Area of Study
1 g A P B |

Figure 4-1: Sustainable Roof Features

This study was conducted to see if the area used as a green roof space would be better used through
additional PV panels. This required both systems to be analyzed in terms of life cycle cost over the
chosen 30 year span as PV Panels typically last 25-30 years, carbon output, LEED impact, and other less
tangible factors. Additional areas of the LEED checklist will be explored to highlight achievable points.

4.1 - Green Roof

As stated, the JCA will feature an extensive green roof system in the green areas of Figure 4-1. An
extensive system features a soil substrate of 4-6 inches of a lightweight growing medium as opposed to
intensive systems which will have a heavier growing medium in depths ranging to 24”. Extensive systems
can be utilized on sloped roofs, are low-maintenance and drought-tolerant due to their makeup of
grasses, mosses, and flowers. Intensive roofs can feature much more diverse fauna ranging from bushes
to trees and require larger degree maintenance. Figure 4.1-1 shows what an extensive green roof might
look like when fully installed.
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Figure 4.1-1: Extensive Green Roof, nemo.uconn.edu Figure 4.1-2: Autodesk Vasari Energy Model

Green roof systems typically cost from $10-$15 per square foot, twice as much as a normal roof system.
However they reduce building energy costs by as much as 25% depending upon roof coverage, help curb
the urban heat island effect and mitigate storm water runoff.

Life-Cycle Assessment

For the life cycle analysis the cost of the system needed to be determined over a 30 year period using
net present values with an interest rate of 5% to account for future expenses or gains. The system was
priced at $15 a square foot, on the high end of system costs. A maintenance rate of $0.50 per square
foot for the first year was included with the assumption that it would no longer require heavy
maintenance after this point. After ten years it was assumed that 10% of the system would require
replacement and after 20 years an additional 20% due to damages and disrepair. However the green
roof typically protects the roof membrane which has a life cycle of 15 years which would not need to be
replaced, which was priced at $7.50 per square foot covered by the green roof. A summary of the
system value and the prices is shown in Table 4.1-1.
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Green Roof Cost

Cost Yr NPV Adj |Final Cost

Initial Cost -94050 1| -94050.00
Maintenance -3000 1 0.9524 -2857.20
Replacement -9405 10 0.613 -5765.27
-18810 200 0377  -7091.37

Savings on Roof Repair | 30,000 | 15| 0481 1443000
Salvage | 18810) 300 0231 434511
Total Cost | $(90,988.73)

Table 4.1-1: Green Roof Life-Cycle Cost
Direct Energy

The paper, Cost-Effectiveness of Green Roofs, was used to as a reference point to quantify cost savings
for the analysis of the system. In this paper it is noted that only the top two floors see a significant
energy reduction due to a lower cooling load, so a conservative value of 1% of the total buildings energy
usage was determined to be saved due to the green roof as recommended by the paper. To determine
the energy savings possible it was necessary to have an estimate for the amount of energy the building
used. A model was created using AutoDesk Vasari, a program used for preliminary planning that can
help give better insight into a buildings energy usage and green potential. The building mass was
modeled and divided into levels; the garage was excluded as minimal energy use was anticipated. The
spaces were assigned an open-office occupancy and a percentage of exterior glazing was estimated
based off of exterior elevations of the JCA. Based upon the energy usage the green roof saved an
estimated $ 4,139 annually. The Vasari output is attached in Appendix T.

Storm Water Treatment

The reduction in storm water is another benefit of a green roof system. Extensive roofs have the
capability of reducing storm water by as much as 50%. To determine the annual reduction in run off the
area of coverage was multiplied by the half the annual rainfall. Rockville, MD sees 43 inches of rain per
year, which results in 80.4 kgal of water reduced annually. Fisher et al.(2008) indicated a market value
of $2.27 per kgal of storm water processed. This results in an annual savings of $182.50.

CO, Emissions

Electricity use can also be quantified in an equivalent weight in CO, emissions. According to Blackhurst
et al.(2010) 1.5 Ib. of CO,/kWh is the electricity emissions factor. Due to the reduction in energy use the
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green roof results in a reduction in 47755 lbs. of CO, per year. The amount of CO, emissions released
during green roof production and installation is 54.3 |bs. After seven years the system will have reduced
more emissions than were involved in its creation.

Summarized in Table 4.1-2 are the relevant numbers as discussed in the three sections above. The cost
benefit of a reduction in the Urban Heat Island effect is difficult to quantify as it is based upon the
surrounding buildings as well and was not accounted for.

Extensive Green Roof

Annual Energy| Estimated Cost of Annual
Use Estimate | Reduction Electricity Savings
kWh kWh S/kWh
3183686 31836.86 | S 0.13 | $4,138.79
Carbon Run-off |[Storm Water | Annual
Reductions |Saved (kgal) Cost Savings
Ibs CO, kgal S$/kgal
47755.29 80.4 2.27 S 182.51
Total Annual Savings S 4,321.30
Pay Back Period | 21.06 Years

Table 4.1-2: Green Roof Annual Savings and Payback Period
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4.2 — PV Panels

Figure 4.2-1: Sunpower T5 Solar Roof Tiles, Source: sunpowercopr.com

PV panels are made of a crystalline silicon material, a semi-conductor that has the ability to convert
sunlight into electricity. Solar energy has become increasingly popular, resulting in more efficient
systems that are much more cost effective. Additionally federal and state grants for solar products and
producing renewable electricity make PV panels an attractive and feasible addition to most buildings.

PV panels vary with efficiency based upon the material used as the semi-conductor as well as by
geographic location, tilt, and orientation. Sunpower is one of the leading manufacturers, making
extremely efficient panels. Their T5 Solar Roof tiles shown in Figure 4.2-1 were chosen, as their
efficiency can offset the poor tilt angle of 5 degrees. The tilt angle is often by default chosen as the
latitude of the location of interest. The Solar Roof tiles require no penetration yet are highly resistant to
wind forces and lightweight due to their interlocking design meaning little to no impact on the structural
system, additional system specifications are included in Appendix U. This also results in a high density of
panels with the potential for greater energy gains from a smaller area. To determine the amount of
energy the system could produce the number of panels the space permitted had to be determined. A
typical system uses panels in increments of eight, forming a string, a schematic wiring diagram for a
string and for the system shown in Figure 4.2-2. Based upon the square footage available the larger
western portion of the penthouse roof as seen in Figure 4-1 could hold 136 panels and the eastern
portion of the roof could hold 40 panels. At 320 watts per panel this resulted in a 56.3 kW system.
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10 Strings
PerBox

Combiner|

DC
Disconnect

String Schematic, 8 Panels

AC
Disconnect

DC

Box1

Combiner

Box2

Combiner

Switchboard

Box3

AC
GFl Fuse

Wiring Schematic

Figure 4.2-2: Schematic wiring diagram for PV Panels

Life-Cycle Assessment

System Advisory Model (SAM), software available from National Renewable Energy Laboratory can

provide a life cycle for a given system with a large degree of sophistication. Federal and state tax credit

and production incentives, location, tilt, azimuth, and electricity rates among other factors are

accounted for. The shading factor was difficult to quantify, so a solar study was done using Vasari and
resulted in an estimated value of 0.8 (1 = No shade, 0 = fully shaded). An example screen shot of the

solar study is visible in Figure 4.2-3. The SAM life cycle devised a payback period of 27 years. For the full

cash flow output from SAM see Appendix V.

SAM Study

Figure 4.2-3: Solar Study

Metric Base

Net Annual Energy 55,522 kWh
LCOE Nominal 16.66 ¢/kWh
LCOE Real 12.78 ¢/kWh
First Year Revenue without System | ($250,655.16)
First Year Revenue with System ($240,903.48)
First Year Net Revenue $9,751.68
After-tax NPV ($10,323.20)
Payback Period (Yrs) 27.0
DC-to-AC Capacity Factor 12.00%
First year kWhac/kWdc 1,048
System Performance Factor 0.81
Total Land Area 0.19 acres

Table 4.2-1: Systems Advisory Model Figures
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CO, Emissions

PV panels are a source of renewable energy and thus are often considered ‘carbon neutral’. This is a
misnomer however, as while they may not produce carbon while in use their manufacturing, deliver,
and installation result in carbon emissions. Carbon Footprint of Electricity Generation claims the lifecycle
carbon production of PV panels results in an equivalent CO, emission of 58 g/kWh. This results in the
production of over 7000 lbs. of CO, annually.

4.3 LEED Investigation

The original LEED checklist was obtained courtesy of AECOM which was completed in 9/9/2008. The
building has since received a Gold rating while it was originally striving for Silver during this planning
period which is based upon LEED-NC Version 2.2.

Going through the LEED checklist it was determined that the green roof system could impact the earning
of 7 credits, of which 5 were confirmed as very likely to be achieved by AECOM'’s design team. In the
Sustainable Site section, credits 6.1 and 6.2 for Storm water Design were both earned which would be
highly impacted by the green roof assembly. Credits 7.1 and 7.2, Heat Island Effect Roof, were also in
large part earned due to the usage of a vegetated assembly, though a high albedo roof such as a
thermoplastic polyolefin (TPO) membrane could be used in conjunction with the PV panels to possibly
earn this credit. Credit 5.2, Site Development, requires that the vegetated open space in the project
exceed the local zonings requirement by 25% and vegetated roofs count towards this. Additionally
Water Efficiency credits 3.1 and 3.2 could be influenced if a grey water system were incorporated with
the green roof.

The PV Panels only influenced one item on the LEED checklist, Energy and Atmosphere credit 2. This can
award up to 3 LEED points based upon the percentage of renewable energy generated. The designed PV
system earns approximately 1.5% of the annual energy usage, and when combined with the high roof PV
panels would likely surpass 2.5% which is enough to earn a point. For 2 points they would need to
produce 7.5% of the buildings energy use which is less likely, and finally 12.5% for 3 points which is
unfeasible based upon the current study.

There are several additional credits that could be earned with little effort. Energy and Atmosphere
credits 5, measurement and verification, is easily earned and potentially at no cost if the mechanical and
electrical engineers are involved early on and align their systems so the quantities can be measured in a
simple fashion by such means as placing all lighting circuits on one panel so that data can be broken
down in a simple manner. Credit 6, green power, could be attained by contacting the local energy
provider and exploring the possibilities of certified green power, however this may come at some cost as
this energy would likely be cost slightly more.

Interestingly the structure could have a large impact on LEED credits Materials and Reuse 4.2 and 5.2.
Credit 4.2 for recycled materials and 5.2 for local materials could be strongly impacted by the structural
system. These require 20% of the base cost to be recycled or local respectively, and most of the
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structure which currently accounts for 13% of the cost as seen in Table 3.1-2 would qualify as both of
these.

4.4 - Summary

In summary, due to the multitude of benefits, lower start-up cost and quicker payback period it was
determined that the green roof is the more viable option and should be kept as designed. The green
roof cost roughly half the initial investment the PV panels did and paid it back in 7 less years. Net carbon
output was in the negative and storm water mitigation was improved. Urban heat island effects were
reduced. Additionally the green roof heavily impacted 4 LEED credits with the possible influence of 3
more while the PV panels were only seen to account for 2 at most, Table 4.3-1 summarized this. The
roof geometry caused shading which reduced the effectiveness of the PV panels in the areas accounted
for, but depending on the planned system for the high roof a LEED point might still be earned for
renewable energy.

Sustainability Summary

Photovoltaics | Green Roof

System Cost S 215,769 | $90,989

Carbon Footprint ( tons CO,) 106.3 -505.0
Stormwater Mitigation (kgal) - 80.4
Payback Period (yr) 27.0 21.1
Weight (psf) 3 20

Structural Impact NA Moderate

LEED Credits (gained[possible]) 2[3] 4[7]

Table 4.4-1: Sustainability Summary
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Chapter 5 - Conclusion

This thesis has proven that for the Judicial Center Annex a steel structural system employing braced
frames is a viable solution. Though cost data may not be entirely accurate, the system would have the
potential to save money or compare favorably due in part to the large story heights. The increased
schedule which may have further impact beyond the month that was shown to be saved would be
another benefit of this system. The steel system was able to adequately maintain the architecture and
floor layout with less perceived impact.

The seismic exploration was of great interest. The steel systems developed, like their predecessor in MD,
were able to handle the situation, though a greater effort had to be made to deal with the much larger
forces. Layout 3 was seen as the most economical, utilizing eccentric braced frames to reduce the cost
of the lateral system by 21%. The impact of chevron frames in a seismic region was proven to be very
large. Redundancy was also seen as beneficial; not only in terms of the p factor but in terms of better
torsional performance which was seen to very adversely affect the building. Additionally the “cost” of
detailing a system for an R value greater than 3 was seen.

The sustainability study showed that for this situation the green roofs were the appropriate choice. The
tiered roof provided shade and prevented a large enough layout to produce enough electricity to quickly
offset the initial cost. The low maintenance green roof was able to pay off its initial cost approximately 6
years earlier and provided other benefits in the form of storm water mitigation and a negative carbon
emission. The green roof also had many more potential impacts upon the LEED accreditation process.
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Appendix A — Typical Plans
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Appendix B — Wind Calculations
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Appendix C — Seismic Calculation (As Designed)
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Appendix D — Steel Framing Hand Calculations
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Appendix E — RAM Designs
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Appendix F — MD Preliminary Sizing

Braced Frame 2 - 50% Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 24 30.61 33.05 42.15 50.58 1.01 HSS6x6x3/8 7.58 2.28 161.11 11.03 9.67 65.97 HSS8x8x3/8
17 24 29.41 103.6 126.96 152.35 3.05 HSS8x8x3/8 10.4 31 113.85 22.08 19.37 181.27 HSS8x8x3/8
17 24 29.41 142.85 175.06 210.07 4.20 HSS9x9x3/8 11.8 3.51 100.55 28.31 23.30 247.47 HSS9x9x5/8
17 24 29.41 186.4 228.42 274.11 5.48 HSS10x10x3/8 13.2 3.92 90.03 35.31 26.67 316.79 HSS9x9x5/8
15.5 24 28.57 230.8 274.75 329.70 6.59 HSS9x9x5/8 18.7 3.4 100.84 28.15 23.21 390.66 HSS10x10x5/8
14 24 27.78 268.32 310.64 372.76 7.46 HSS9x9x5/8 18.7 34 98.06 29.76 24.09  405.42 HSS10x10x5/8
15 19 24.21 301.68 384.36 461.24 9.22 HSS9x9x5/8 18.7 3.4 85.44 39.21 28.15  473.79 HSS10x10x5/8
10 19 21.47 301.68 340.91 409.10 8.18 HSS9x9x5/8 18.7 3.4 75.78 49.84 31.26 526.11 HSS10x10x5/8
Braced Frame 3 - 50% Size Selection
Story Ht  Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer Optimized
19 24 30.61 33.05 42.15 50.58 1.01 HSS6x6x3/8 7.58 2.28 161.11 11.03 9.67 65.97 HSS8x8x3/8
17 24 29.41 103.6 126.96 152.35 3.05 HSS8x8x3/8 10.4 31 113.85 22.08 19.37 181.27 HSS8x8x3/8
17 24 29.41 142.85  175.06 210.07 4.20 HSS9x9x3/8 11.8 3.51 100.55 28.31 23.30 247.47 HSS9x9x3/8
17 24 29.41 186.4 228.42 274.11 5.48 HSS10x10x3/8 13.2 3.92 90.03 35.31 26.67 316.79 HSS9x9x3/8
15.5 24 28.57 230.8 274.75 329.70 6.59 HSS9x9x5/8 18.7 3.4 100.84 28.15 23.21 390.66 HSS9x9x5/8
14 24 27.78 268.32  310.64 372.76 7.46 HSS9x9x5/8 18.7 34 98.06 29.76 24.09 405.42 HSS9x9x5/8
15 24 28.30 301.68 355.76 426.91 8.54 HSS10x10x5/8 21 3.8 89.37 35.83 26.88 508.00 HSS10x10x5/8
10 24 26.00 301.68  326.82 392.18 7.84 HSS9x9x5/8 18.7 34 91.76 33.99 26.11 439.38 HSS10x10x5/8
Braced Frame 4 - 25% Chevron (Assuming only half is in compr) Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 29.33 24.00 8.2625 13.52 16.23 0.32 HSS4x4x5/16 4.1 1.49 193.299 7.66 6.72 24.79
17 29.33 22.45 25.90 39.65 47.58 0.95 HSS5x5x3/8 6.18 1.87 144.0727 13.79 12.09 67.26 HSS5x5x3/8
17 29.33 22.45 35.71 54.67 65.61 1.31 HSS5x5x3/8 6.18 1.87 144.0727 13.79 12.09 67.26 HSS6x6x3/8
17 29.33 22.45 43.6375 66.81 80.17 1.60 HSS6x6x3/8 7.58 2.28 118.1649 20.50 17.98 122.64 HSS6x6x3/8
15.5 29.33 21.34 49.5875 72.15 86.58 1.73 HSS6x6x3/8 7.58 2.28 112.3055 22.69 19.69 134.34 HSS6x6x3/8
14 29.33 20.27 57.58 79.61 95.53 1.91 HSS6x6x3/8 7.58 2.28 106.7088 25.14 21.38 145.89 HSS6x6x3/8
15 29.33 20.98 64.8 92.69 111.23 222 HSS6x6x3/8 7.58 2.28 110.4087 23.48 20.26 138.21 HSS6x6x3/8
10 29.33 17.75 64.8 78.43 94.12 1.88 HSS6x6x3/8 7.58 2.28 93.42101 32.80 25.57 174.46 HSS6x6x3/8
Braced Frame 5 - 25% Chevron (Assuming only half is in compr) Size Selection
Story Ht  Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer Optimized
19 29.33 24.00 8.2625 13.52 16.23 0.32 HSS4x4x5/16 4.1 1.49 193.30 7.66 6.72 24.79
17 29.33 22.45 25.9 39.65 47.58 0.95 HSS5x5x3/8 6.18 1.87 144.07 13.79 12.09 67.26 HSS5x5x3/8
17 29.33 22.45 35.713 54.67 65.61 131 HSS5x5x3/8 6.18 1.87 144.07 13.79 12.09 67.26 HSS6x6x3/8
17 29.33 22.45 43.638 66.81 80.17 1.60 HSS6x6x3/8 7.58 2.28 118.16 20.50 17.98 122.64 HSS6x6x3/8
15.5 29.33 21.34 49.588  72.15 86.58 173 HSS6x6x3/8 7.58 2.28 112.31 22.69 19.69 134.34 HSS6x6x3/8
14 29.33 20.27 57.58 79.61 95.53 191 HSS6x6x3/8 7.58 2.28 106.71 25.14 21.38 145.89 HSS6x6x3/8
15 29.33 20.98 64.8 92.69 111.23 222 HSS6x6x3/8 7.58 2.28 110.41 23.48 20.26 138.21 HSS6x6x3/8
10 20 22.36 129.6  144.90 173.88 3.48 HSS8x8x3/8 10.4 31 86.56 38.20 27.79 260.11 HSS8x8x3/8
Note: Bottom Floor Not Chevron
Braced Frame 1- 50% Size Selection
Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 26 32.20 33.05 40.93 49.12 0.98 HSS6x6x3/8 7.58 228 169.4868 9.96 8.74 59.61  HSS8x8x3/8
17 26 31.06 103.6 123.78 148.54 297 HSS8x8x1/2 13.5 3.04 122.6228 19.04 16.69 202.83 HSS8x8x3/8
17 26 31.06 142.85 170.68 204.81 4.10 HSS8x8x1/2 13.5 3.04 122.6228 19.04 16.69 202.83  HSS9x9x1/2
17 26 31.06 174.55 208.55 250.26 5.01 HSS9x9x1/2 15.3 3.45 108.0503 24.52 20.97 288.82  HSS9x9x1/2
15.5 26 30.27 198.35 230.92 277.11 5.54 HSS9x9x5/8 18.7 3.4 106.834 25.08 21.35 359.26  HSS9x9x5/8
14 26 29.53 230.32 261.59 313.90 6.28 HSS9x9x5/8 18.7 3.4 104.2223 26.35 22.15 372.83  HSS9x9x5/8
15 26 30.02 259.2 299.24 359.09 7.18 HSS10x10x5/8 21 3.8 94.78946 31.85 25.13 475.04 HSS10x10x5/8
10 26 27.86 259.2 277.71 333.25 6.67 HSS10x10x5/8 21 3.8 87.96877 36.99 27.33 516.59] HSS10x10x5/8

Note: One Frame, Top Brace takes entire shear
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Appendix H — Foundation Spreadsheets
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Bearing 80000 psf
Friction 800 psf
Db L Bearing Skin Total
2.5 35 392.70  188.50  581.19
3 35 565.49 226.19 791.68
3.5 35 769.69  263.89 1033.58
4 35 1005.31 301.59 1306.90
4.5 35 1272.34  339.29 1611.64
5 35 1570.80 376.99 1947.79
5.5 35 1900.66 414.69  2315.35
6 35 2261.94 452.39 2714.33
6.5 35 2654.64 490.09 3144.73
7 35 3078.76  527.79  3606.55
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Appendix | — SCBF Design
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Appendix J — MRSA

Sa /(R/)

Mode Period  UX uy Cmi (Cmi*Ux)"2  (Cmi*Uy)~2
1 1.725041  0.5152 70.4698 0.072462 1.394E-07  2.608E-03 0.347818 0.072462046
2 1.60468 31.7643  1.2925 0.077897 6.122E-04  1.014E-06 0.373906 0.077897151
3 1.183462 41.2288  0.0039 0.105622 1.896E-03  1.697E-11 0.506987  0.105622318
4 0.471367 0.001 19.9877 0.208333 4.340E-12  1.734E-03 1 0.208333333
5 0.414642 14.7315  0.0005 0.208333 9.419E-04  1.085E-12 1 0.208333333
6 0.401094 0.0144  0.6507 0.208333 9.000E-10  1.838E-06 1 0.208333333
7 0.271695 5.7715  0.2072 0.208333 1.446E-04  1.863E-07 1 0.208333333

SUM 94.0267 92.6123 3.595E-03  4.345E-03

Cmx 0.0600

Cmy 0.0659

x=North y=South

w 15447.65
MRSA ELF % Deduction %Allowable MRSA VfirWithp=13
Vbx 926.2405 Vbx 1622.518 0.570866118 0.85 1379.14 1792.832

Vby 1018.202 Vby 1622.518 0.627544472 0.85 1379.14 1792.882
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Appendix K — CA Layout 1 Preliminary Sizes

Braced Frame 2 - 50% Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 24 30.61 134.1795 171.14 205.36 411 HSS8x8x1/2 135 3.04 120.83 19.60 17.19 208.89 W14x176
17 24 29.41 420.875 515.76 618.92 12.38 HSS12x12x5/8 25.7 4.62 76.39 49.05 32.63 754.81 W14x176
17 24 29.41 560.82 687.26 824.71 16.49 W14x132 38.8 3.76 93.86 32.49 26.25 916.79 W14x176
17 24 29.41 709.085 868.95 1042.74 20.85 W14x145 4.7 3.98 88.68 36.40 28.14 1081.29 W14x176
155 24 28.57 805.805 959.25 1151.10 23.02 W14x159 46.7 4 85.71 38.96 29.22  1228.15 W14x193
14 24 27.78 873.34 1011.07 1213.28 24.27 W14x159 46.7 4 83.35 41.19 30.08 1264.44 W14x193
15 19 24.21 899.405 1145.91 1375.09 27.50 W14x159 46.7 4 72.62 54.27 34.00 1429.08 W14x211
10 19 21.47 899.405 1016.37 1219.64 24.39 W14x145 42.7 3.98 64.74 68.30 36.80  1414.37 W14x132
Braced Frame 3 - 50% Size Selection
Story Ht  Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 24 30.61 134.18 171.14 205.36 4.11 HSS8x8x1/2 13.5 3.04 120.83 19.60 17.19 208.89 W14x176
17 24 29.41 420.88  515.76 618.92 12.38 HSS12x12x5/8  25.7 4.62 76.39 49.05 32.63 754.81 W14x176
17 24 29.41 560.82  687.26 824.71 16.49 W14x132 38.8 3.76 93.86 32.49 26.25 916.79 W14x176
17 24 29.41 709.09  868.95 1042.74 20.85 W14x145 42.7 3.98 88.68 36.40 28.14 1081.29 W14x176
15.5 24 28.57 805.81  959.25 1151.10 23.02 W14x159 46.7 4 85.71 38.96 29.22 1228.15 W14x193
14 24 27.78 873.34 1011.07 1213.28 24.27 W14x159 46.7 4 83.35 41.19 30.08 1264.44 W14x193
15 24 28.30 899.41  1060.62 1272.75 25.45 W14x159 46.7 4 84.91 39.70 29.52 1240.54 W14x193
10 24 26.00 899.41  974.36 1169.23 23.38 W14x145 42.7 3.98 78.39 46.58 31.90 1226.03 W14x159
Braced Frame 4 - 25% Chevron (Assuming only half is in compr) Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 29.33 24.00 33.544875 54.90 65.88 132 HSS6x6x3/8 7.58 2.28 126.3226 17.94 15.73 107.31
17 29.33 22.45 105.22 161.08 193.30 3.87 HSS8x8x1/2 135 3.04  88.62367 36.44 28.16  342.09  HSS8x8x1/2
17 29.33 22.45 140.21 214.65 257.58 5.15 HSS8x8x1/2 135 3.04 8862367 36.44 28.16  342.09  HSS8x8x1/2
17 29.33 22.45 177.27125 271.39 325.67 6.51 HSS8x8x1/2 135 3.04 8862367 36.44 28.16  342.09  HSS8x8x1/2
155 29.33 21.34 201.45125 293.12 351.74 7.03 HSS8x8x1/2 135 3.04  84.22913 40.34 29.76  361.63  HSS8x8x1/2
14 29.33 20.27 218.335 301.85 362.22 7.24 HSS8x8x1/2 135 3.04  80.03159 44.69 3130 380.33  HSS8x8x1/2
15 29.33 20.98 224.85125 321.64 385.97 7.72 HSS9x9x5/8 18.7 3.4 74.0388 52.21 33.49 563.62  HSS9x9x5/8
10 29.33 17.75 224.85125 272.15 326.58 6.53 HSS8x8x1/2 13.5 3.04 70.06576 58.30 34.92 424.28 HSS9x9x5/8
Note: No Top Bracing Currently Planned for Frames 4and 5
Braced Frame 5 - 25% Chevron (Assuming only half is in compr) Size Selection
Story Ht  Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 29.33 24.00 33.545  54.90 65.88 132 HSS6Ex6x3/8 7.58 2.28 126.32 17.94 15.73 107.31
17 29.33 22.45 105.22  161.08 193.30 3.87 HSS8x8x1/2 135 3.04 88.62 36.44 28.16 342.09 HSS8x8x1/2
17 29.33 22.45 140.21  214.65 257.58 5.15 HSS8x8x1/2 135 3.04 88.62 36.44 28.16 342.09 HSS8x8x1/2
17 29.33 22.45 177.27  271.39 325.67 6.51 HSS8x8x1/2 135 3.04 88.62 36.44 28.16 342.09 HSS8x8x1/2
15.5 29.33 21.34 201.45  293.12 351.74 7.03 HSS8x8x1/2 135 3.04 84.23 40.34 29.76 361.63 HSS8x8x1/2
14 29.33 20.27 218.34  301.85 362.22 7.24 HSS8x8x1/2 135 3.04 80.03 44.69 31.30 380.33  HSS8x8x1/2
15 29.33 20.98 22485 321.64 385.97 7.72 HSS9x9x5/8 18.7 34 74.04 52.21 33.49 563.62  HSS9x9x5/8
10 20 22.36 449.7  502.78 603.34 12.07 HSS10x10x5/8 21 3.8 70.61 57.40 34.72 656.30 HSS10x10x5/8

Note: Bottom Floor Not Chevron

Braced Frame 1- 50% Size Selection
Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 26 32.20 134.1795 166.19 199.43 3.99 HSS8x8x1/2 13.5 3.04 127.1151 17.71 15.53 188.75 W14x193
17 26 31.06 420.875 502.86 603.43 12.07 HSS12x12x5/8 25.7 4.62 80.68688 43.96 31.06 718.48 W14x193
17 26 31.06 560.82 670.06 804.07 16.08 W14x132 38.8 3.76 99.14186 29.12 24.37  850.99 W14x193
17 26 31.06 709.085 847.21 1016.65 20.33 W14x145 42.7 3.98 93.66166 32.63 26.33 1011.75 W14x193
15.5 26 30.27 805.805 938.13 1125.76 22.52 W14x145 42.7 3.98 91.26519 34.36 27.19 1045.07 W14x193
14 26 29.53 873.34 991.90 1190.28 23.81 W14x176 51.8 4.02 88.1482 36.84 28.33  1320.71 W14x193
15 26 30.02 899.405 1038.35 1246.02 24.92 W14x176 51.8 4.02 89.60198 35.65 27.80 1295.99 W14x193
10 26 27.86 899.405 963.64 1156.36 23.13 W14x159 46.7 4 83.57033 40.98 30.01 1261.12 W14x193

Note: One Frame, Top Brace takes entire shear
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Appendix L — CA Layout 1 Story Drifts
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Appendix M - CA Layout 2 Preliminary Sizing

Braced Frame 2 - 25% Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 24 30.61 103.22 131.64 157.97 3.16 HSS12x12x5/8  25.7 4.62 79.51 45.28 31.49  728.47| HSS9x9x5/8
17 24 29.41 161.88 198.37 238.04 4.76 HSS12x12x5/8  25.7 4.62 76.39 49.05 32.63  754.81] HSS9x9x5/8
17 24 29.41 215.70 264.33 317.20 6.34 HSS12x12x5/8  25.7 4.62 76.39 49.05 32.63  754.81] HSS9x9x5/8
17 24 29.41 272.73 334.21 401.05 8.02 HSS12x12x5/8  25.7 4.62 76.39 49.05 32.63  754.81| HSS9x9x5/8
15.5 24 28.57 309.93 368.94 442.73 8.85 HSS12x12x5/8  25.7 4.62 74.21 51.98 33.43  773.18 HSS12x12x5/8
14 24 27.78 335.90 388.87 466.65 9.33 HSS12x12x5/8  25.7 4.62 72.17 54.95 34.17  790.24 HSS12x12x5/8
15 19 24.21 345.93 440.73 528.88 10.58 HSS12x12x5/8  25.7 4.62 62.88 72.40 37.45  866.18| HSS12x12x5/8
10 19 21.47 345.93 390.91 469.09 9.38 HSS12x12x5/8 25.7 4.62 55.77 92.03 39.83 921.27| HSS12x12x5/8
Braced Frame 7 - 25% Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19
17 33 37.12 161.88 182.09 218.51 4.37 HSS12x12x5/8  25.7 4.62 96.42 30.79 25.34  586.05 HSS10x10x5/8
17 33 37.12 215.70 242.64 291.17 5.82 HSS12x12x5/8  25.7 4.62 96.42 30.79 25.34  586.05 HSS10x10x5/8
17 33 37.12 272.73 306.79 368.14 7.36 HSS12x12x5/8 25.7 4.62 96.42 30.79 25.34 586.05 HSS12x12x5/8
15.5 33 36.46 309.93 342.41 410.89 8.22 HSS12x12x5/8  25.7 4.62 94.70 31.92 25.95  600.31| HSS12x12x5/8
14 33 35.85 335.90 364.88 437.85 8.76 HSS12x12x5/8  25.7 4.62 93.11 33.02 26.53  613.56| HSS12x12x5/8
15 33 36.25 345.93 379.98 455.98 9.12 HSS12x12x5/8  25.7 4.62 94.15 32.29 26.15  604.85| HSS12x12x5/8
10 33 34.48 345.93 361.46 433.75 8.68 HSS12x12x5/8 257 4.62 89.56 35.68 27.81  643.32| HSS12x12x5/8
Frames 7 and 8 Discontinued at upper level
Braced Frame 3 - 25% Size Selection
Story Ht ~ Bay Length Brace Length Shear Axial Force IncByTor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 24 30.61 103.22 131.64 157.97 3.16 HSS12x12x5/8 25.7 4.62 79.51 45.28 31.49 728.47| HSS12x12x5/8
17 24 29.41 161.88  198.37 238.04 4.76 HSS12x12x5/8 25.7 4.62 76.39 49.05 32.63 754.81| HSS12x12x5/8
17 24 29.41 2157  264.33 317.20 6.34 HSS12x12x5/8  25.7 4.62 76.39 49.05 32.63 754.81 HSS12x12x5/8
17 24 29.41 27273 33421 401.05 8.02 HSS12x12x5/8  25.7 4.62 76.39 49.05 32.63 754.81 HSS12x12x5/8
155 24 28.57 309.93  368.94 442.73 8.85 HSS12x12x5/8  25.7 4.62 74.21 51.98 33.43 773.18 HSS12x12x5/8
14 24 27.78 3359  388.87 466.65 9.33 HSS12x12x5/8  25.7 4.62 7217 54.95 34.17 790.24 HSS12x12x5/8
15 24 28.30 34593  407.93 489.52 9.79 HSS12x12x5/8 25.7 4.62 73.51 52.96 33.68 779.02| HSS12x12x5/8
10 24 26.00 34593  374.75 449.70 8.99 HSS12x12x5/8 25.7 4.62 67.53 62.76 35.82 828.56| HSS12x12x5/8
Braced Frame 8- 25% Size Selection
Story Ht  Bay Length Brace Length Shear Axial Force IncByTor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19
17 21 27.02 161.88  208.27 249.92 5.00 HSS10x10x5/8 21 3.8 85.32 39.32 29.36 554.97| HSS12x12x5/8
17 21 27.02 215.7 277.52 333.02 6.66 HSS10x10x5/8 21 3.8 85.32 39.32 29.36 554.97| HSS12x12x5/8
17 21 27.02 272.73  350.89 421.06 8.42 HSS10x10x5/8 21 3.8 85.32 39.32 29.36 554.97 HSS12x12x5/8
15.5 21 26.10 309.93  385.20 462.24 9.24 HSS10x10x5/8 21 3.8 82.42 42.13 30.43 575.05 HSS12x12x5/8
14 21 25.24 335.9 403.70 484.44 9.69 HSS10x10x5/8 21 3.8 79.70 45.06 31.42 593.90 HSS12x12x5/8
15 21 25.81 34593  425.11 510.13 10.20 HSS10x10x5/8 21 3.8 81.50 43.10 30.77 581.48 HSS12x12x5/8
10 21 23.26 34593 383.14 459.77 9.20 HSS10x10x5/8 21 3.8 73.45 53.05 33.70 636.97| HSS12x12x5/8
Braced Frame 4 - 25% Chevron (Assuming only half is in compr) Size Selection
Story Ht Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 29.33 24.00 25.80 42.23 50.68 101 HSS5x5x3/8 6.18 187 154.019 12.07 10.58 58.85
17 29.33 22.45 80.94 123.91 148.69 2.97 HSS8x8x1/2 135 3.04 8561842 39.04 29.25  355.44  HSS8x8x1/2
17 29.33 22.45 107.85 165.11 198.14 3.96 HSS8x8x1/2 135 3.04 8862367 36.44 28.16  342.09 HSS8x8x1/2
17 29.33 22.45 136.36 208.76 250.52 5.01 HSS8x8x1/2 135 3.04  88.62367 36.44 28.16  342.09 HSS8x8x1/2
15.5 29.33 21.34 154.96 225.48 270.57 5.41 HSS8x8x1/2 135 3.04  84.22913 40.34 29.76  361.63  HSS8x8x1/2
14 29.33 20.27 167.95 232.19 278.63 5.57 HSS8x8x1/2 135 3.04  80.03159 44.69 31.30  380.33  HSS8x8x1/2
15 29.33 20.98 172.96 247.42 296.90 5.94 HSS8x8x1/2 135 3.04  82.80655 41.74 30.29 367.97 HSS8x8x1/2
10 29.33 17.75 172.96 209.35 251.22 5.02 HSS8x8x1/2 135 3.04  70.06576 58.30 34.92 424.28| HSS8x8x1/2
Note: No Top Bracing Currently Planned for Frames 4 and 5
Braced Frame 1- 25% Size Selection
Bay Length Brace Length Shear Axial Force IncBy Tor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 26 32.20 206.43 255.68 306.81 6.14 HSS10x10x5/8 21 38 101.6921 27.68 23.47  443.66 HSS10x10x5/8
17 26 31.06 161.88 193.41 232.09 4.64 HSS10x10x5/8 21 3.8 98.09826 29.74 24.74  467.57 HSS10x10x5/8
17 26 31.06 215.70 257.72 309.26 6.19 HSS10x10x5/8 21 3.8 98.09826 29.74 24.74  467.57 HSS10x10x5/8
17 26 31.06 272.73 325.85 391.02 7.82 HSS10x10x5/8 21 38 98.09826 29.74 24.74  467.57 HSS10x10x5/8
155 26 30.27 309.93 360.82 432.98 8.66 HSS10x10x5/8 21 3.8 95.58828 31.32 25.63  484.49 HSS10x10x5/8
14 26 29.53 335.90 381.50 457.80 9.16 HSS10x10x5/8 21 38 93.25151 32.91 26.48  500.38 HSS10x10x5/8
15 26 30.02 345.93 399.37 479.24 9.58 HSS10x10x5/8 21 3.8 94.78946 31.85 25.92  489.91 HSS10x10x5/8
10 26 27.86 345.93 370.63 444.75 8.90 HSS10x10x5/8 21 3.8 87.96877 36.99 28.39  536.66] HSS10x10x5/8

Note: Two Rows of Braced Frames Except at Top Level
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Braced Frame 5 - 25% Chevron (Assuming only half is in compr) Size Selection
Story Ht  Bay Length Brace Length Shear Axial Force IncByTor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19 29.33 24.00 25.804  42.23 50.68 101 HSS5x5x3/8 6.18 187 154.02 12.07 10.58 58.85
17 29.33 22.45 80.938  123.91 148.69 2.97 HSS8x8x1/2 135 3.04 88.62 36.44 28.16 342.09 HSS8x8x1/2
17 29.33 22.45 107.85  165.11 198.14 3.96 HSS8x8x1/2 135 3.04 88.62 36.44 28.16 342.09 HSS8x8x1/2
17 29.33 2245 136.36  208.76 250.52 5.01 HSS8x8x1/2 13.5 3.04 88.62 36.44 28.16 342.09 HSS8x8x1/2
15.5 29.33 21.34 154.96  225.48 270.57 5.41 HSS8x8x1/2 13.5 3.04 84.23 40.34 29.76 361.63 HSS8x8x1/2
14 29.33 20.27 167.95 23219 278.63 5.57 HSS8x8x1/2 135 3.04 80.03 44.69 31.30 380.33  HSS8x8x1/2
15 29.33 20.98 17296  247.42 296.90 5.94 HSS8x8x1/2 13.5 3.04 82.81 41.74 30.29 367.97 HSS8x8x1/2
10 20 22.36 34593  386.76 464.11 9.28 HSS9x9x5/8 18.7 3.4 78.92 45.95 3171 533.67] HSS9x9x5/8
Note: Bottom Floor Not Chevron
Braced Frame 6 - 25% Size Selection
Bay Length Brace Length Shear Axial Force IncByTor Trial Size, A=P/F Size A r KL/r Fe Fer P Optimized
19
17 24.33 29.68 161.88  197.48 236.97 4.74 HSS10x10x5/8 21 3.8 93.72879 32.58 26.30 497.13 HSS10x10x5/8
17 24.33 29.68 215.7 263.14 315.77 6.32 HSS10x10x5/8 21 3.8 93.72879 32.58 26.30 497.13 HSS10x10x5/8
17 24.33 29.68 27273  332.70 399.24 7.98 HSS10x10x5/8 21 38 93.72879 32.58 26.30 497.13 HSS10x10x5/8
155 24.33 28.85 309.93 367.48 440.97 8.82 HSS10x10x5/8 21 38 91.0985 34.49 27.25 515.11 HSS10x10x5/8
14 24.33 28.07 335.9 387.54 465.05 9.30 HSS10x10x5/8 21 3.8 88.64346 36.43 28.15 532.01 HSS10x10x5/8
15 24.33 28.58 34593 406.38 487.66 9.75 HSS10x10x5/8 21 3.8 90.25995 35.13 27.56 520.87 HSS10x10x5/8
10 26 27.86 34593  370.63 444.75 8.90 HSS10x10x5/8 21 3.8 87.96877 36.99 28.39 536.66| HSS10x10x5/8
Braced Frame 1:Two Frames
Column Betw Lines 6and 6.5 AND Between 4.2and 4.3 Size Selection
Floor  Ht Length  TribArea InflArea DL(psf)  LLReduction LL 3 PFromVb Total P Size A r Ku/r Fe Fer 3 Optimized
Roof 19 52 482 1931 80 0.59 59.14 72.09 579.7569952 651.85 W14x90 26.5 37 61.62162  75.38 37.88 903.40 W14x90
Pent 17 52 482 1931 110 " o049 150.00 171.87  579.7569952 751.62 W14x90 26.5 37 55.13514  94.15 40.04 954.84 W14x90
Sth 17 52 482 1931 80 " o045 44.71 22891  579.7569952 808.67 W14x90 265 37 55.13514  94.15 40.04 954.84 W14x109
4th 17 52 482 1931 80 ’ 0.42 42.07 28532 579.7569952 865.08 W14x99 29.1 371 54.98652  94.66 40.08 1049.77 W14x109
3rd 155 52 482 1931 80 " 0.40 40.27 34130  579.7569952 921.06 W14x99 29.1 371 50.13477  113.87 41.61 1089.66 W14x109
4
2nd 14 52 482 1931 80 0.40 40.00 397.21  579.7569952 976.97 W14x99 29.1 3.71 4528302 139.58 43.04 1127.17 W14x159
1st | 15 52 482 1931 80 " o040 40.00 453.12  579.7569952 1032.88 W14x99 29.1 3.71 4851752 121.59 42.09 1102.45 W14x159
Terrace 10 52 482 1931 80 0.40 40.00 509.03  579.7569952 1088.79 W14x99 29.1 371 32.34501 273.58 46.32 1213.06 W14x159
Braced Frame 1:Two Frames
Column Betw Lines 6and 6.5 AND Between 4.2and 4.3 Size Selection
Floor Ht Length  Trib Area Infl Area DL(psf) LLReduction LL P PFromVb  Total P Size A r KL/r Fe Fer P Optimized
Roof 19 52 482 1931 80 0.59 59.14 72.09 579.7569952 651.85 W14x90 265 37 61.62162  75.38 37.88 903.40 W14x90
Pent 17 52 482 1931 110 " 0.49 150.00 171.87  579.7569952 751.62 W14x90 26.5 37 55.13514  94.15 40.04 954.84 W14x90
4
Sth 17 52 482 1931 80 0.45 44.71 22891  579.7569952 808.67 W14x90 26.5 37 5513514  94.15 40.04 954.84 W14x109
4th 17 52 482 1931 80 " o4 42.07 28532 579.7569952 865.08 W14x90 26.5 37 55.13514  94.15 40.04 954.84 W14x109
3rd 15.5 52 482 1931 80 " o040 40.27 341.30  579.7569952 921.06 W14x90 265 37 50.27027 113.26 41.56 991.31 W14x109
2nd 14 52 482 1931 80 " o040 40.00 397.21  579.7569952 976.97 W14x90 265 37 45.40541 138.83 43.00 1025.63 W14x159
1st 15 52 482 1931 80 i’ 0.40 40.00 453.12  579.7569952 1032.88 W14x99 29.1 371 4851752 121.59 42.09 1102.45 W14x159
Terrace 10 52 482 1931 80 0.40 40.00 509.03  579.7569952 1088.79 W14x90 26.5 37 3243243 272.11 46.30 1104.22 W14x159
Braced Frame 4and 5
Column 4.2/4.9 and 6.2/6.9 Size Selection
Floor Ht Length  Trib Area Infl Area DL(psf) LLReduction LL P PFromVb  Total P Size A r KL/r Fe Fer P Optimized
Roof 19 29.33 390 1560 80 0.63 62.98 59.08 1027.86784 1086.95 W14x120 353 3.74 60.96257 77.01 38.10 1210.53 W14x74
Pent 17 29.33 390 1560 110 ) 150.00 139.81 1027.86784 1167.68 W14x120 353 3.74 54.54545 96.20 40.22 1277.94 W14x74
Sth 17 29.33 390 1560 80 ’ 0.47 46.93 186.40 1027.86784 1214.27 W14x120 353 3.74  54.54545 96.20 40.22 1277.94 W14x99
’
4th 17 29.33 390 1560 80 0.44 43.99 232.42 1027.86784 1260.29 W14x120 353 3.74  54.54545  96.20 40.22 1277.94 W14x99
3rd 15.5 29.33 390 1560 80 " 0.42 41.98 278.05 1027.86784 1305.91 W14x120 353 3.74 49.73262 115.72 4173 1325.71 W14x99
2nd 14 29.33 390 1560 80 " oam 40.50 323.38 1027.86784 1351.25 W14x120 353 3.74 4491979 141.85 43.14 1370.61 W14x159
1st | 15 29.33 390 1560 80 " o040 40.00 368.62 1027.86784 1396.49 W14x132 388 3.76  47.87234 124.89 42.29 1476.63 W14x159
Terrace 10 29.33 390 1560 80 0.40 40.00 413.86 1027.86784 1441.73 W14x132 388 376 31.91489 281.00 46.41 1620.69 W14x159
Braced Frame 2and 3
Column G/F Size Selection
Floor Ht Length  Trib Area Infl Area DL(psf) LLReduction LL P PFromVb Total P Size A r KL/r Fe Fer P Optimized
Roof 19 24 503 2014 80 0.58 58.42 75.05 1256.140156 133119 W14x132 388 3.76 60.6383  77.84 3821 1334.39 W14x120
’
Pent 17 24 503 2014 110 0.49 150.00 179.17  1256.140156 143531 W14x132 38.8 3.76 5425532 97.23 40.32 1407.90 W14x120
Sth 17 24 503 2014 80 " 0.44 44.30 23860  1256.140156 1494.74 W14x145 4.7 3.98 51.25628 108.94 41.26 1585.68 W14x176
4th 17 24 503 2014 80 ) 41.71 297.38  1256.140156 1553.52 W14x145 4.7 3.98 51.25628 108.94 41.26 1585.68 W14x176
3rd 15.5 24 503 2014 80 " o040 40.00 355.73  1256.140156 1611.87 W14x145 4.7 3.98 46.73367 131.05 42.62 1637.90 W14x176
2nd 14 24 503 2014 80 ’ 0.40 40.00 414.08  1256.140156 1670.22 W14x145 4.7 3.98 4221106 160.64 43.89 1686.79 W14x211
’
Ist 15 24 503 2014 80 0.40 40.00 472.43  1256.140156 1728.57 W14x159 46.7 4 45 141.34 43.12 1812.29 W14x211
Terrace 10 24 503 2014 80 0.40 40.00 530.77 _ 1256.140156 1786.91 W14x145 42.7 3.98  30.15075 314.85 46.78 1797.93 W14x211
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Braced Frame 7

Column D/E Size Selection

Floor Ht Length  Trib Area Infl Area DL(psf) LLReduction LL PFromVb Total P Size A r KL/r Fe Fer P Optimized
Roof 19 33 455 1820 80 0.60 60.16 68.29 913.5564773 981.84 W14x99 291 371 61.45553  75.78 37.94 993.52 W14x109
Pent 17 33 455 1820 110 " 050 150.00 162.47  913.5564773 1076.03 W14x99 29.1 371 54.98652  94.66 40.08 1049.77 W14x109
Sth 17 33 455 1820 80 " o045 45.30 216.46  913.5564773 1130.01 W14x109 32 373 54.69169  95.69 40.18 1157.12 W14x145
4th 17 33 455 1820 80 T 043 42.58 269.82  913.5564773 1183.38 W14x109 32 373 54.69169  95.69 40.18 1157.12 W14x145
3rd 155 33 455 1820 80 ’ 0.41 40.72 322,77  913.5564773 1236.33 W14x109 32 3.73  49.86595 115.10 41.69 1200.61 W14x145
2nd 14 33 455 1820 80 " o040 40.00 375.55  913.5564773 1289.11 W14x120 353 3.74 4491979 141.85 43.14 1370.61 W14x193
1st 15 33 455 1820 80 " o040 40.00 428.33  913.5564773 1341.89 W14x120 353 3.74 4812834 123.56 42.21 1341.01 W14x193
Terrace 10 33 455 1820 80 0.40 40.00 481.11  913.5564773 1394.67 W14x120 353 3.74  32.08556 278.02 46.37 1473.32 W14x193
Braced Frame 8

Column D.5/C Size Selection

Floor Ht Length  Trib Area Infl Area DL(psf) LLReduction LL PFromVb  Total P Size A r KL/r Fe Fer P Optimized
Roof 19 21 663 2652 80 0.54 54.13 97.50 1435.58875 1533.09 W14x145 42.7 3.98 57.28643 87.22 39.33 1511.58 W14x109
Pent 17 21 663 2652 110 " 046 150.00 234.74 1435.58875 1670.33 W14x159 46.7 4 51 110.04 41.34 1737.54 W14x109
Sth 17 21 663 2652 80 Y 0.42 41.82 31225 1435.58875 1747.84 W14x159 46.7 4 51 110.04 41.34 1737.54 W14x109
4th 17 21 663 2652 80 " o040 40.00 389.16 1435.58875 1824.75 W14x159 46.7 4 51 110.04 41.34 1737.54 W14x145
3rd 15.5 21 663 2652 80 " o040 40.00 466.07 1435.58875 1901.66 W14x176 518 4.02  46.26866 133.70 42.76 1993.25 W14x145
2nd 14 21 663 2652 80 " o040 40.00 542.98 1435.58875 1978.57 W14x176 518 4.02  41.79104 163.88 44.01 2051.56 W14x211
1st 15 21 663 2652 80 i’ 0.40 40.00 619.89 1435.58875 2055.48 W14x176 518 4.02 4477612 142.76 43.18 2013.16 W14x211
Terrace 10 21 663 2652 80 0.40 40.00 696.79 1435.58875 2132.38 W14x176 518 4.02 29.85075 321.21 46.85 2183.97 W14x211
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Appendix N — Brace Removal Tables
X

dmax dmin davg dmax/dav
Brace 4/5
Roof 4.24 3.30 3.77 1.12
Penthous: 3.33 2.70 3.02 1.10
Level 5 2.58 2.19 2.39 1.08
Level 4 1.93 1.67 1.80 1.07
Level 3 1.30 1.17 1.24 1.05
Level 2 0.76 0.70 0.73 1.04
Level 1 0.35 0.35 0.35 1.00
Roof 4.27 3.31 3.79 1.13
Penthous: 3.29 2.71 3.00 1.10
Level 5 2.67 2.23 2.45 1.09
Level 4 1.94 1.67 1.81 1.07
Level 3 1.30 1.17 1.24 1.05
Level 2 0.76 0.70 0.73 1.04
Level 1 0.35 0.35 0.35 1.00
Roof 4.27 3.31 3.79 1.13
Penthous: 3.30 2.71 3.01 1.10
Level 5 2.68 2.23 2.46 1.09
Level 4 2.03 1.71 1.87 1.09
Level 3 1.31 1.17 1.24 1.06
Level 2 0.76 0.70 0.73 1.04
Level 1 0.35 0.35 0.35 1.00
Roof 4.29 3.33 3.81 1.13
Penthoust 3.32 2.73 3.03 1.10
Level 5 2.70 2.25 2.48 1.09
Level 4 2.05 1.72 1.89 1.09
Level 3 1.41 1.21 1.31 1.08
Level 2 0.77 0.70 0.74 1.05
Level 1 0.35 0.35 0.35 1.00
Roof 4.27 3.31 3.79 1.13
Penthoust 3.31 2.72 3.02 1.10
Level 5 2.70 2.24 2.47 1.09
Level 4 2.04 1.71 1.88 1.09
Level 3 1.41 1.21 1.31 1.08
Level 2 0.86 0.75 0.81 1.07
Level 1 0.36 0.35 0.36 1.01
Roof 4.29 3.35 3.82 1.12
Penthous: 3.33 2.75 3.04 1.10
Level 5 2.70 2.26 2.48 1.09
Level 4 2.06 1.73 1.90 1.09
Level 3 1.42 1.22 1.32 1.08
Level 2 0.88 0.75 0.82 1.08
Level 1 0.46 0.40 0.43 1.07

Al

0.91
0.75
0.65
0.63
0.54
0.41
0.35

0.98
0.62
0.73
0.64
0.54
0.41
0.35

0.97
0.62
0.65
0.72
0.55
0.41
0.35

0.97
0.62
0.65
0.64
0.64
0.42
0.35

0.96
0.61
0.66
0.63
0.55
0.50
0.36

0.96
0.63
0.64
0.64
0.54
0.42
0.46

A2

0.60
0.51
0.52
0.50
0.47
0.35
0.35

0.60
0.48
0.56
0.50
0.47
0.35
0.35

0.60
0.48
0.52
0.54
0.47
0.35
0.35

0.60
0.48
0.53
0.51
0.51
0.35
0.35

0.59
0.48
0.53
0.50
0.46
0.40
0.35

0.60
0.49
0.53
0.51
0.47
0.35
0.40

Davg Amax/Navg

0.76 1.2
0.63 1.2
059 1.1
0.57 1.1
05111
038 1.1
0.351.0

0.79 1.2
0.551.1
0.65 1.1
0.57 1.1
05111
038 1.1
0.35 1.0

0.79 1.2
0.551.1
0.59 1.1
0.63 1.1
05111
038 1.1
0.35 1.0

0.79 1.2
0.551.1
0.59 1.1
0.58 1.1
0.58 1.1
03911
0.35 1.0

0.78 1.2
0.551.1
0.60 1.1
0.57 1.1
05111
04511
0.36 1.0

0.78 1.2
0.56 1.1
0.59 1.1
0.58 1.1
05111
03911
043 1.1

PHOUSE

Sth

4th

3rd

2nd

1st
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Brace 1
Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

4.14
3.26
2.59
1.94
131
0.76
0.35

4.16
3.29
2.63
1.94
1.31
0.76
0.35

4.20
3.30
2.67
2.01
131
0.76
0.35

4.20
3.27
2.65
2.00
1.37
0.77
0.35

4.21
3.28
2.65
2.00
1.37
0.82
0.36

4.19
3.25
2.63
1.98
1.35
0.81
0.40

3.32
2.78
221
1.68
1.17
0.70
0.35

3.37
2.85
2.33
1.69
1.17
0.70
0.35

341
2.86
2.34
1.83
1.18
0.70
0.35

3.38
2.81
2.33
1.80
1.29
0.71
0.35

3.41
2.83
2.34
1.81
1.30
0.83
0.35

3.35
2.77
2.29
1.76
1.26
0.80
0.44

3.73
3.02
2.40
1.81
1.24
0.73
0.35

3.77
3.07
2.48
1.82
1.24
0.73
0.35

3.81
3.08
2.51
1.92
1.25
0.73
0.35

3.79
3.04
2.49
1.90
1.33
0.74
0.35

3.81
3.06
2.50
191
1.34
0.83
0.36

3.77
3.01
2.46
1.87
131
0.81
0.42

dmax/dav

111
1.08
1.08
1.07
1.06
1.04
1.00

1.10
1.07
1.06
1.07
1.06
1.04
1.00

1.10
1.07
1.07
1.05
1.05
1.04
1.00

111
1.08
1.06
1.05
1.03
1.04
1.00

1.10
1.07
1.06
1.05
1.03
0.99
1.01

111
1.08
1.07
1.06
1.03
1.01
0.95

Al

0.88
0.67
0.65
0.63
0.55
0.41
0.35

0.87
0.66
0.69
0.63
0.55
0.41
0.35

0.90
0.63
0.66
0.70
0.55
0.41
0.35

0.93
0.62
0.65
0.63
0.60
0.42
0.35

0.93
0.63
0.65
0.63
0.55
0.46
0.36

0.94
0.62
0.65
0.63
0.54
0.41
0.40

A2

0.54
0.57
0.53
0.51
0.47
0.35
0.35

0.52
0.52
0.64
0.52
0.47
0.35
0.35

0.55
0.52
0.51
0.65
0.48
0.35
0.35

0.57
0.48
0.53
0.51
0.58
0.36
0.35

0.58
0.49
0.53
0.51
0.47
0.48
0.35

0.58
0.48
0.53
0.50
0.46
0.36
0.44

Navg Amax/Aavg

0.71 1.2
0.62 1.1
0.59 1.1
0.57 1.1
05111
038 1.1
0.35 1.0

0.70 1.3
059 1.1
0.67 1.0
0.58 1.1
05111
038 1.1
0.35 1.0

0.73 1.2
0.58 1.1
0.59 1.1
0.68 1.0
05211
0.38 1.1
0.35 1.0

0.75 1.2
0.55 1.1
0.59 1.1
0.57 1.1
0.59 1.0
03911
0.35 1.0

0.76 1.2
0.56 1.1
0.59 1.1
0.57 1.1
05111
0.47 1.0
0.36 1.0

0.76 1.2
0.55 1.1
0.59 1.1
0.57 1.1
0.50 1.1
03911
0.42 1.0

PHOUSE

5Sth

4th

3rd

2nd

1st
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X

Brace 6
Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

431
3.30
2.60
1.94
131
0.76
0.35

4.26
3.29
2.66
1.94
131
0.76
0.35

4.28
331
2.68
2.02
131
0.76
0.35

4.23
3.27
2.65
2.00
1.37
0.77
0.35

4.24
3.28
2.66
2.00
1.37
0.82
0.36

4.20
3.25
2.63
1.98
1.35
0.81
0.40

3.54
2.86
2.22
1.68
1.17
0.70
0.35

3.46
2.83
2.35
1.69
1.17
0.70
0.35

3.51
2.88
2.39
1.84
1.18
0.70
0.35

3.42
2.82
2.33
1.81
1.30
0.71
0.35

3.44
2.84
2.35
1.82
1.31
0.83
0.35

3.36
2.77
2.29
1.77
1.26
0.80
0.44

3.93
3.08
241
1.81
1.24
0.73
0.35

3.86
3.06
2.51
1.82
1.24
0.73
0.35

3.90
3.10
2.54
1.93
1.25
0.73
0.35

3.83
3.05
2.49
1.91
1.34
0.74
0.35

3.84
3.06
2.51
1.91
1.34
0.83
0.36

3.78
3.01
2.46
1.88
131
0.81
0.42

dmax/dav

1.10
1.07
1.08
1.07
1.06
1.04
1.00

1.10
1.08
1.06
1.07
1.06
1.04
1.00

1.10
1.07
1.06
1.05
1.05
1.04
1.00

111
1.07
1.06
1.05
1.03
1.04
1.00

1.10
1.07
1.06
1.05
1.02
0.99
1.01

111
1.08
1.07
1.06
1.03
1.01
0.95

Al

1.01
0.70
0.66
0.63
0.55
0.41
0.35

0.97
0.63
0.72
0.63
0.55
0.41
0.35

0.97
0.63
0.66
0.71
0.55
0.41
0.35

0.96
0.62
0.65
0.63
0.60
0.42
0.35

0.96
0.62
0.66
0.63
0.55
0.46
0.36

0.95
0.62
0.65
0.63
0.54
0.41
0.40

A2

0.68
0.64
0.54
0.51
0.47
0.35
0.35

0.63
0.48
0.66
0.52
0.47
0.35
0.35

0.63
0.49
0.55
0.66
0.48
0.35
0.35

0.60
0.49
0.52
0.51
0.59
0.36
0.35

0.60
0.49
0.53
0.51
0.48
0.48
0.35

0.59
0.48
0.52
0.51
0.46
0.36
0.44

Davg Amax/hAavg

0.851.2
0.67 1.0
0.60 1.1
0.57 1.1
05111
0.38 1.1
0.35 1.0

0.80 1.2
0.56 1.1
0.69 1.0
0.58 1.1
05111
0.38 1.1
0.35 1.0

0.80 1.2
0.56 1.1
0.61 1.1
0.69 1.0
0.52 11
0.38 1.1
0.35 1.0

0.78 1.2
0.56 1.1
0.59 1.1
0.57 1.1
0.60 1.0
03911
0.35 1.0

0.78 1.2
0.56 1.1
0.60 1.1
0.57 1.1
052 1.1
0.47 1.0
0.36 1.0

0.77 1.2
0.55 1.1
0.59 1.1
0.57 1.1
0.50 1.1
03911
0.42 1.0

PHOUSE

5th

4th

3rd

2nd

1st
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Brace 7
Roof
Penthous:
Level 5
Level 4
Level 3

Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

4.90
4.01
3.20
2.36
1.55
0.89
0.38

4.90
4.01
3.19
2.36
1.55
0.89
0.38

4.91
4.02
3.19
2.35
1.56
0.89
0.38

4.90
4.01
3.19
2.35
1.55
0.89
0.38

4.91
4.02
3.19
2.36
1.55
0.88
0.38

4.88
4.00
3.18
2.35
1.55
0.88
0.38

3.67
2.97
2.21
1.65
111
0.64
0.27

3.68
3.01
2.47
1.66
111
0.65
0.26

3.66
3.01
2.49
1.94
1.12
0.64
0.26

3.61
2.98
2.46
1.92
1.36
0.65
0.26

3.53
2.93
241
1.87
1.33
0.86
0.27

3.39
2.81
2.30
1.78
1.25
0.80
0.43

4.29
3.49
2.71
2.01
1.33
0.77
0.33

4.29
3.51
2.83
2.01
1.33
0.77
0.32

4.29
3.52
2.84
2.15
1.34
0.77
0.32

4.26
3.50
2.83
2.14
1.46
0.77
0.32

4.22
3.48
2.80
2.12
1.44
0.87
0.33

4.14
3.41
2.74
2.07
1.40
0.84
0.41

dmax/dav

1.14
1.15
1.18
1.18
1.17
1.16
1.17

1.14
1.14
1.13
1.17
1.17
1.16
1.19

1.15
1.14
1.12
1.10
1.16
1.16
1.19

1.15
1.15
1.13
1.10
1.07
1.16
1.19

1.16
1.16
1.14
1.12
1.08
1.01
1.17

1.18
1.17
1.16
1.14
111
1.05
0.94

Al

0.89
0.81
0.84
0.81
0.66
0.51
0.38

0.89
0.82
0.83
0.81
0.66
0.51
0.38

0.89
0.83
0.84
0.79
0.67
0.51
0.38

0.89
0.82
0.84
0.80
0.66
0.51
0.38

0.89
0.83
0.83
0.81
0.67
0.50
0.38

0.88
0.82
0.83
0.80
0.67
0.50
0.38

A2

0.70
0.76
0.56
0.54
0.47
0.37
0.27

0.67
0.54
0.81
0.55
0.46
0.39
0.26

0.65
0.52
0.55
0.82
0.48
0.38
0.26

0.63
0.52
0.54
0.56
0.71
0.39
0.26

0.60
0.52
0.54
0.54
0.47
0.59
0.27

0.58
0.51
0.52
0.53
0.45
0.37
0.43

Navg Amax/Aavg

0.80 1.1
0.79 1.0
0.70 1.2
0.68 1.2
0.57 1.2
0.44 1.2
0.33 1.2

0.78 1.1
0.68 1.2
0.82 1.0
0.68 1.2
0.56 1.2
0.451.1
0.321.2

0.77 1.2
0.68 1.2
0.70 1.2
0.81 1.0
0.58 1.2
04511
03212

0.76 1.2
0.67 1.2
0.69 1.2
0.68 1.2
0.69 1.0
04511
0.321.2

0.75 1.2
0.68 1.2
0.69 1.2
0.68 1.2
0.57 1.2
0.551.1
033 1.2

0.73 1.2
0.67 1.2
0.68 1.2
0.67 1.2
0.56 1.2
04411
04111

PHOUSE

Sth

4th

3rd

2nd

1st
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Brace 2
Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

4.95
4.03
3.20
2.36
1.55
0.89
0.38

4.96
4.04
3.22
2.36
1.55
0.89
0.38

4.96
4.05
3.23
2.39
1.56
0.89
0.39

4.96
4.05
3.23
2.40
1.59
0.90
0.39

4.95
4.06
3.23
2.40
1.59
0.93
0.39

5.02
4.12
3.29
2.44
1.62
0.95
0.43

3.28
2.74
2.16
1.63
1.10
0.65
0.27

3.30
2.78
2.27
1.63
1.10
0.65
0.27

3.34
2.80
2.30
1.76
111
0.65
0.28

3.38
2.82
231
1.78
1.25
0.65
0.28

341
2.84
2.33
1.80
1.27
0.81
0.29

3.70
3.07
2.52
1.96
1.39
0.90
0.49

4.12
3.39
2.68
2.00
1.33
0.77
0.33

4.13
341
2.75
2.00
1.33
0.77
0.33

4.15
3.43
2.77
2.08
1.34
0.77
0.34

4.17
3.44
2.77
2.09
1.42
0.78
0.34

4.18
3.45
2.78
2.10
1.43
0.87
0.34

4.36
3.60
291
2.20
1.51
0.93
0.46

dmax/dav

1.20
1.19
1.19
1.18
1.17
1.16
117

1.20
1.18
1.17
1.18
1.17
1.16
1.17

1.20
1.18
1.17
1.15
1.17
1.16
1.16

1.19
1.18
117
1.15
1.12
1.16
1.16

1.18
1.18
1.16
1.14
1.11
1.07
1.15

1.15
1.15
1.13
111
1.08
1.03
0.93

Al

0.92
0.83
0.84
0.81
0.66
0.51
0.38

0.92
0.82
0.86
0.81
0.66
0.51
0.38

0.91
0.82
0.84
0.83
0.67
0.50
0.39

0.91
0.82
0.83
0.81
0.69
0.51
0.39

0.89
0.83
0.83
0.81
0.66
0.54
0.39

0.90
0.83
0.85
0.82
0.67
0.52
0.43

A2

0.54
0.58
0.53
0.53
0.45
0.38
0.27

0.52
0.51
0.64
0.53
0.45
0.38
0.27

0.54
0.50
0.54
0.65
0.46
0.37
0.28

0.56
0.51
0.53
0.53
0.60
0.37
0.28

0.57
0.51
0.53
0.53
0.46
0.52
0.29

0.63
0.55
0.56
0.57
0.49
0.41
0.49

Aavg Amax/Aavg

0.73 1.3
0.71 1.2
0.69 1.2
0.67 1.2
0.56 1.2
0.451.1
0.33 1.2

0.72 1.3
0.67 1.2
0.751.1
0.67 1.2
0.56 1.2
0.451.1
0.331.2

0.73 1.3
0.66 1.2
0.69 1.2
074 1.1
0.57 1.2
044 1.1
0.34 1.2

0.74 1.2
0.67 1.2
0.68 1.2
0.67 1.2
0.651.1
0.44 1.2
0.34 1.2

0.73 1.2
0.67 1.2
0.68 1.2
0.67 1.2
0.56 1.2
0.53 1.0
03411

0.77 1.2
0.69 1.2
0.711.2
0.70 1.2
0.58 1.2
0.47 1.1

0.46 1.1
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4th

3rd

2nd

1st
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Brace 3
Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

4.93
4.12
3.19
2.36
1.55
0.89
0.38

4.97
4.16
3.33
2.36
1.55
0.89
0.38

5.01
4.18
3.36
2.51
1.56
0.89
0.38

5.02
4.17
3.34
2.51
1.70
0.89
0.38

5.01
4.14
3.33
2.49
1.69
1.02
0.39

4.98
4.10
3.29
2.46
1.66
1.00
0.49

3.34
271
217
1.64
1.10
0.64
0.27

3.34
271
2.20
1.64
1.10
0.64
0.27

3.34
2.72
221
1.67
1.10
0.64
0.27

3.32
2.72
2.20
1.67
1.13
0.64
0.27

3.32
2.72
2.20
1.67
1.13
0.67
0.27

3.29
2.69
2.19
2.65
1.12
0.67
0.29

4.14
3.42
2.68
2.00
1.33
0.77
0.33

4.16
3.44
2.77
2.00
133
0.77
0.33

4.18
3.45
2.79
2.09
133
0.77
0.33

4.17
3.45
2.77
2.09
1.42
0.77
0.33

4.17
3.43
2.77
2.08
1.41
0.85
0.33

4.14
3.40
2.74
2.56
1.39
0.84
0.39

dmax/dav

1.19
1.21
1.19
1.18
1.17
1.16
1.17

1.20
1.21
1.20
1.18
1.17
1.16
1.17

1.20
1.21
1.21
1.20
1.17
1.16
1.17

1.20
1.21
1.21
1.20
1.20
1.16
1.17

1.20
1.21
1.20
1.20
1.20
1.21
1.18

1.20
1.21
1.20
0.96
1.19
1.20
1.26

Al

0.81
0.93
0.83
0.81
0.66
0.51
0.38

0.81
0.83
0.97
0.81
0.66
0.51
0.38

0.83
0.82
0.85
0.95
0.67
0.51
0.38

0.85
0.83
0.83
0.81
0.81
0.51
0.38

0.87
0.81
0.84
0.80
0.67
0.63
0.39

0.88
0.81
0.83
0.80
0.66
0.51
0.49

A2

0.63
0.54
0.53
0.54
0.46
0.37
0.27

0.63
0.51
0.56
0.54
0.46
0.37
0.27

0.62
0.51
0.54
0.57
0.46
0.37
0.27

0.60
0.52
0.53
0.54
0.49
0.37
0.27

0.60
0.52
0.53
0.54
0.46
0.40
0.27

0.60
0.50
-0.46
1.53
0.45
0.38
0.29

Navg \max/Aavg

072 1.1
0.74 1.3
0.68 1.2
0.68 1.2
0.56 1.2
0.44 1.2
0.33 1.2

072 11
0.67 1.2
0.77 1.3
0.68 1.2
0.56 1.2
0.44 1.2
0.33 1.2

073 1.1
0.67 1.2
0.70 1.2
0.76 1.3
0.57 1.2
0.44 1.2
0.33 1.2

0.73 1.2
0.68 1.2
0.68 1.2
0.68 1.2
0.65 1.2
0.44 1.2
0.33 1.2

0.74 1.2
0.67 1.2
0.69 1.2
0.67 1.2
0.57 1.2
0.52 1.2
0.33 1.2

0.74 1.2
0.66 1.2
0.19 4.5
1.17 0.7
0.56 1.2
04511

03913

PHOUSE

5Sth

4th

3rd

2nd

1st
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Brace 8
Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

Roof
Penthous:
Level 5
Level 4
Level 3
Level 2
Level 1

5.13
4.18
3.18
2.35
1.55
0.89
0.38

5.15
4.21
3.39
2.35
1.55
0.89
0.38

5.17
4.25
3.43
2.60
1.56
0.89
0.38

5.18
4.27
3.44
2.61
1.80
0.89
0.38

5.17
4.27
3.45
2.61
1.81
1.14
0.39

5.18
4.28
3.45
2.61
1.81
1.14
0.62

3.28
2.69
2.18
1.64
111
0.65
0.27

3.28
2.69
2.17
1.64
111
0.65
0.27

3.28
2.69
2.17
1.63
111
0.65
0.27

3.27
2.68
2.17
1.63
1.09
0.65
0.27

3.28
2.69
2.17
1.63
1.10
0.63
0.27

3.25
2.66
2.15
1.62
1.09
0.63
0.26

4.21
3.44
2.68
2.00
1.33
0.77
0.33

4.22
3.45
2.78
2.00
1.33
0.77
0.33

4.23
3.47
2.80
2.12
1.34
0.77
0.33

4.23
3.48
2.81
2.12
1.45
0.77
0.33

4.23
3.48
2.81
212
1.46
0.89
0.33

4.22
3.47
2.80
2.12
1.45
0.89
0.44

dmax/dav

1.22
1.22
1.19
1.18
1.17
1.16
1.17

1.22
1.22
1.22
1.18
1.17
1.16
1.17

1.22
1.22
1.23
1.23
1.17
1.16
1.17

1.23
1.23
1.23
1.23
1.25
1.16
1.17

1.22
1.23
1.23
1.23
1.24
1.29
1.18

1.23
1.23
1.23
1.23
1.25
1.29
1.41

Al

0.95
1.00
0.83
0.80
0.66
0.51
0.38

0.94
0.82
1.04
0.80
0.66
0.51
0.38

0.92
0.82
0.83
1.04
0.67
0.51
0.38

0.91
0.83
0.83
0.81
0.91
0.51
0.38

0.90
0.82
0.84
0.80
0.67
0.75
0.39

0.90
0.83
0.84
0.80
0.67
0.52
0.62

A2

0.59
0.51
0.54
0.53
0.46
0.38
0.27

0.59
0.52
0.53
0.53
0.46
0.38
0.27

0.59
0.52
0.54
0.52
0.46
0.38
0.27

0.59
0.51
0.54
0.54
0.44
0.38
0.27

0.59
0.52
0.54
0.53
0.47
0.36
0.27

0.59
0.51
0.53
0.53
0.46
0.37
0.26

Aavg \max/Aavg

0.77 1.2
0.76 1.3
0.69 1.2
0.67 1.2
0.56 1.2
04511
033 1.2

0.77 1.2
0.67 1.2
0.79 1.3
0.67 1.2
0.56 1.2
04511
0.33 1.2

0.76 1.2
0.67 1.2
0.69 1.2
0.78 1.3
0.57 1.2
0.45 1.1
0.33 1.2

0.75 1.2
0.67 1.2
0.69 1.2
0.68 1.2
0.68 1.3
04511
0.33 1.2

0.75 1.2
0.67 1.2
0.69 1.2
0.67 1.2
0.57 1.2
0.56 1.4
0.33 1.2

0.75 1.2
0.67 1.2
0.69 1.2
0.67 1.2
0.57 1.2
0.45 1.2

0.44 1.4

PHOUSE

Sth

4th

3rd

2nd

1st
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Appendix O — CA Layout 2, Story Drifts and Torsional Irregularity

Torsional Irregularity X Direction
Story Smax Smin Savg 6max/bavg Al A2 Aavg Amax/Navg Ax
Roof 4.01 3.24 3.625 111 1.01 0.62 0.82 12 0.85
Penthouse 3 2.62 2.81 1.07 0.60 0.49 0.55 1.1 0.79
Level 5 24 2.13 2.265 1.06 0.62 0.53 0.58 11 0.78
Level 4 1.78 1.6 1.69 1.05 0.59 0.49 0.54 11 0.77
Level 3 1.19 111 1.15 1.03 0.49 0.45 0.47 1.0 0.74
Level 2 0.7 0.66 0.68 1.03 0.37 0.33 0.35 11 0.74
Level 1 0.33 0.33 0.33 1.00 0.33 0.33 0.33 1.0 0.69
Torsional Irregularity Y Direction
Story Smax Smin Savg 6max/bavg Al A2 Aavg Amax/Aavg Ax
Roof 4.95 3.43 4.19 1.18 0.93 0.64 0.79 1.2 0.97
Penthouse 4.02 2.79 3.405 1.18 0.86 0.55 0.71 1.2 0.97
Level 5 3.16 2.24 2.7 1.17 0.86 0.58 0.72 1.2 0.95
Level 4 2.3 1.66 1.98 1.16 0.80 0.56 0.68 1.2 0.94
Level 3 1.5 11 13 1.15 0.65 0.46 0.56 1.2 0.92
Level 2 0.85 0.64 0.745 1.14 0.48 0.37 0.43 11 0.90
Level 1 0.37 0.27 0.32 1.16 0.37 0.27 0.32 1.2 0.93
Qcx Qcy
Amplified by Cd/I Na= Amplified by Cd/I Na=
Story Height &xe Sye 6x 8y Ax Ay .015sx Story Height &xe Sye 6x 8y Ax Ay .015sx
Roof 19.00 3.68 14.72 3.24 3.42 Roof 19.00 4.12 16.48 2.80 3.42
Penthouse  17.00 2.87 11.48 2.28 3.06 Penthouse  17.00 3.42 13.68 2.92 3.06
Level 5 17.00 2.30 9.20 2.28 3.06 Level 5 17.00 2.69 10.76 2.84 3.06
Level 4 17.00 173 6.92 2.16 3.06 Level 4 17.00 1.98 7.92 2.72 3.06
Level 3 15.50 119 4.76 2.00 2.79 Level 3 15.50 1.30 5.20 2.24 2.79
Level 2 14.00 0.69 2.76 136 2.52 Level 2 14.00 0.74 2.96 1.60 2.52
Level 1 15.00 0.35 1.40 1.40 2.70 Level 1 15.00 0.34 1.36 1.36 2.70
QCXE QCYE
Amplified by Cd/I Na= Amplified by Cd/I Na=
Story Height &xe Sye 6x 8y Ax Ay .015sx Story Height &xe Sye 6x 8y Ax Ay .015sx
Roof 19.00 3.67 14.68 3.32 3.42 Roof 19.00 4.14 16.56 2.84 3.42
Penthouse  17.00 2.84 11.36 2.16 3.06 Penthouse  17.00 3.43 13.72 2.88 3.06
Level 5 17.00 2.30 9.20 2.28 3.06 Level 5 17.00 2.71 10.84 2.88 3.06
Level 4 17.00 173 6.92 2.16 3.06 Level 4 17.00 1.99 7.96 2.60 3.06
Level 3 15.50 119 4.76 1.92 2.79 Level 3 15.50 134 5.36 2.40 2.79
Level 2 14.00 0.71 2.84 1.48 2.52 Level 2 14.00 0.74 2.96 1.56 2.52
Level 1 15.00 0.34 1.36 1.36 2.70 Level 1 15.00 0.35 1.40 1.40 2.70
QX100Y30E QX30Y100
Amplified by Cd/I Na= Amplified by Cd/I Na=
Story Height &xe Sye 6x 8y Ax Ay .015sx Story Height &xe Sye 6x 8y Ax Ay .015sx
Roof 19.00 3.67 1.28 14.68 5.12 3.24 0.96 3.42 Roof 19.00 1.14 4.12 4.56 16.48 1.04 2.80 3.42
Penthouse  17.00 2.86 1.04 11.44 4.16 2.20 0.88 3.06 Penthouse  17.00 0.88 3.42 3.52 13.68 0.68 2.84 3.06
Level 5 17.00 231 0.82 9.24 3.28 2.24 0.88 3.06 Level 5 17.00 0.71 271 2.84 10.84 0.68 2.92 3.06
Level 4 17.00 175 0.60 7.00 2.40 2.27 0.84 3.06 Level 4 17.00 0.54 1.98 2.16 7.92 0.76 2.76 3.06
Level 3 15.50 118 0.39 4.73 1.56 1.97 0.64 2.79 Level 3 15.50 0.35 129 1.40 5.16 0.52 2.16 2.79
Level 2 14.00 0.69 0.23 2.76 0.92 1.40 0.52 2.52 Level 2 14.00 0.22 0.75 0.88 3.00 0.40 1.64 2.52
Level 1 15.00 0.34 0.10 1.36 0.40 1.36 0.40 2.70 Level 1 15.00 0.12 0.34 0.48 1.36 0.48 1.36 2.70
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Appendix P — CA Layout 2 Brace Configuration
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Appendix Q — Eccentric Braced Frame Design

HHICBM SUFpe
Puouze T8¢

HES 4 e Y —w ¢ Sele T - 38
BRde L2

B 2t e B

A 184 &Y Exllifli=2.58
3% 156

2 e

TR T

EBF DEgliall - (1 FLe (WoReT cicr 2o

T Wikl — LEtSLTH 4,23’
LNk BM

V,- .aa}a.% V= 1884 k
V- led

i.
YQ: ,%k ETaRS

SLENDERNESS CHECE.
ﬂf_s"?.i’-

Res=.2JE .3

ps s{%z?zzw
ﬂN=,‘."_'.4

2 ons (Mo keikl)

ﬂrs’&"’c-\% (- 15kl )=P5 0
Siele &Te

HSRy: SFAy = 10k

ﬁc [S%

V-

:-,_i.;j?

(L5 :
t - — 1
14
STHEX © ¥ {
— oy o S B -
..._‘ — ..,rr —
S S-S UE Con BT ion
G

fciopiopiTe HES Wiase
LTR LINE CPoseEs
fnsibe LMK BuT

CoOMMELTI O EEMA s

M s ok

GFg b= 0 (dy- 28 ), Ry =25k

= 2R 2. 2(s)(IM),. 353 k
€ BL

89



Jacob Wiest | | Structural

Moz A(z42): 218 9 1884V

LINK RoTietionl ANiglE

wf

jﬁh 24% &) o 1.8 < Iy LNk PadUNTED BY SHEAR Vi
S0 Bl

et TOH UIWULT = OR

S -9 - :&A g':r‘ -_-.Ms
5o ¢ G ¥ iz

- .?-g.ssi(:g.);,mmz D=

LATERAL BrAciNg B
Ku= O6Ry FyZ /b, = -0 () Uty (17.6) =817 <

STIFFENER FEnUEeMENTS
Wau=P ___Z.b e = -"ﬂ): E.0F
wE R i & _—ZZ.L_

{“M.T' v%futijﬂ
= .Blz= ¥« uvse 3,

Fupl vePmd % i « Shein STIFFENEES OR Ertlee. SpE OF
LINK. BLEMEMT

INTERMEDINTE SUFFENERS
For Ll ReTitiot] = . CREADIA

Dy He= (A48 - Bd/g= 10920
LK. BytaTo £ .02
Bz -A5= Z1.28
INTERPOLATIMG—» 18T\ 1 = M SPraim
tains Yz —> 1€ Wum® Loy « y= Z8FMm

90



Jacob Wiest | | Structural

-— - s R D — R - - LS i ——

FiLL permd g ik . INTERUEDINTE WeEp STIFFENESS

-

@ 18*0.¢. (<1331v)

STIFFENGR. > WrE

Zf w‘}f‘_ =7 : "Z{". 7 -

L

HEB Cue To corlry! Y hls DI

= 5(5%5115) . 233 Scce™s = Fios
iz {je - - 2(.7) - 2(2%]] SMP LY Y

Taele I7.4

USE DOUBLE SIDED ¥k v FAUET WBLWs
To CoMMELT STi6 FEMEES O WES

STFFENER o FLialfaf

. D= Riby gt o
4-(;_" (i E-‘f.-[l-:;'? - -?5.)

= 1% arteetig —» H, e v reells

UsE Povsle siwep Hip i FILET Wewd
B coNNELT STiIFFenEes. o FLaduE

91



Jacob Wiest | | Structural

BEAM OUTSIDE LINK
l-lhr,\[“ g,ggwg\l.aj.ra!-fnz-k'&f.a‘/
§ " e 200 l
?E--_ I-LE‘_}I.- - = BB K

Zih
. i M= Ei‘ﬂ‘qif" _ 7044 -
y
'(L- Z8.3 k Feod £-TRBS
R-5g
"{IFW{%
.:.'"‘:ﬂ t
A= by - 284
tul 4
’,{’:%.{; v Lbr L-‘C—Z.( ‘/5_)_: 2, 23-55 5 L
e ol
z a2
3eLollD OnDEe 1
=101 15> b= (B80T
Foi= 2415k F 4 .
- ePc 205
B]’ I SR ¥ —'*_-%_ t"r'!.
-8z |
I sams. o Mry _ JTEZ
y= 64227 £

2= =0

HadedT ool B —> FiND PoidT BM Tomen!T Need BEALIN

| = 205+ | 8%




Jacob Wiest | | Structural

| Usp olee B
o FIND RECUIRED MOMENT CAPAUTY TL ke o1k MWorRl
Lox= M J
".-*'l_, & 'V'I'I!-L &: 5"’1...
| =208 ., &, (422
.'rfyx-:a;?;, ﬁ %
s8R =FE  Zgge MU I8xB6— 180
| E'EQ
Zp o 1Bl = blL) (dik)
' [0 ={)(It4+%)
. = (84t + 151
R 007
¢ i
Peoviog /" T FRom LItk Zovs
B LA +d— B
use J&" FiLiet hlgws
lff ‘:"' N&TE , Bottosh. T WeoLd UKELY
INTERFERE M ConMECTION
TRY JUST ToF T )
TRY |6<)) A2 T
Az Ew (07 253 4 252+ 2 = Prh (85165
RAAE
ek 1&5- 18 -8.55 =515 41§4¥ S(a A
i 4TTED ARl WEB
. g
&M o Mollaris Aﬁzﬂﬁ' Flk
-
| Aalosa)F - 102 (1) )+ B 82+ TH)
A g
$8.55 (656 378) + 1 & (L5633 +5)
Z—*Zoc-m" -‘"Z%r- H{,
___

93



Jacob Wiest | | Structural

Appendix R — Detailed Cost Breakdown

Gravity Beam
- Plus Labor and Equip
# Length |Weight/LF Total Wt Bare Cost(S/L.F) Total Cost

W8x10 146 1620 10 16309 14.6 21.6 34988.1
W10x33 7 154 33 5088 47.9 54.9 8455.6
W10x12 191 2991 12 36024 17.5 24.5 73171.8
W10x15 1 12.7 15 190 21.7 28.7 364.4
W10x22 6 106.3 22 2346 32.0 39.0 4145.8
W12x14 142 2514.6 14 35596 20.5 27.5 69216.4

W8x15 1 15.3 15 232 22.0 29.0 443.5
W12x40 1 22.5 40 896 57.7 64.7 1456.7
W12x16 66 1401.3 16 22459 23.2 30.2 42374.7
W10x17 2 42 17 713 24.6 31.6 1327.9

W8x18 10 156.1 18 2794 26.0 33.0 5144.0
W12x53 6 184 53 9767 77.0 84.0 15450.2
W12x65 1 30.67 65 1993 94.2 101.2 3104.5
W12x19 45 982.2 19 18617 27.5 34.5 33870.1

W8x21 16 255.3 21 5352 30.4 37.4 9547.5
W14x22 58 1103.7 22 24374 32.0 39.0 43068.2

W8x24 7 139.7 24 3364 34.9 419 5855.7
W12x26 9 171 26 4451 37.7 44,7 7651.0
W14x30 1 19.53 30 588 43.7 50.7 989.3
W14x48 1 24 48 1152 69.6 76.6 1838.4
W14x53 6 184 53 9767 77.0 84.0 15450.2
W14x61 6 198 61 12060 88.3 95.3 18873.0
W14x38 6 144 38 5488 55.3 62.3 8965.6
W16x26 157 4727.3 26 123539 37.9 44.9 212222.7
W16x31 53 1225.3 31 38065 45.0 52.0 63771.4
W16x45 1 12.33 45 558 65.6 72.6 895.4
W16x67 2 46.33 67 3106 97.2 104.2 4828.0
W18x35 25 669.8 35 23477 50.8 57.8 38730.3
W10x39 7 174.7 39 6835 56.7 63.7 11133.7

W38x40 1 33 40 1314 57.7 64.7 2136.3
W16x40 2 65 40 2608 58.2 65.2 4236.6)
W18x40 24 590.8 40 23720 58.2 65.2 38529.6)
W18x76 1 33 76 2504 110.0 117.0 3861.8
W21x44 86 27219 44 120407 64.1 71.1 193643.5
W12x45 2 54.7 45 2437 64.6 71.6 3916.6
W21x48 12 292.3 48 14024 69.6 76.6 22380.9
W21x62 12 300.3 62 18697 90.3 97.3 29212.8
W24x55 22 628.1 55 34625 79.9 86.9 54603.0|
W24x62 10 337 62 20873 89.8 96.8 32624.9
W24x68 29 982 68 67165 99.2 106.2 104263.3
W24x76 18 557.7 76 42510 110.5 117.5 65543.4
W24x104 36 1405.5 104 146348 151.0 158.0 222043.1
W24x117 12 473.3 117 55397 169.7 176.7 83638.8|
W24x103 1 34.5 103 3557 149.5 156.5 5399.2
W24x131 2 65.1 131 8532 190.0 197.0 12827.1
W24x146 1 34.7 146 5072 211.9 218.9 7597.3
W24x192 8 313.1 192 59987 277.8 284.8 89172.9
W27x84 3 81.2 84 6853 122.4 129.4] 10505.3
W30x90 32 540.6 90 48562 130.3 137.3 74199.1
W30x99 1 20.5 99 2030 143.6 150.6 3087.0
W30x116 1 15.67 116 1823 168.7 175.7 2753.0
W33x118 62.7 118 7399 171.1 178.1 11167.5
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Gravity Columns
# Length Weight/ft Total Weight | Bare Cost(S/L.F) Plus Labor/Equip Total Cost
W10x33 7 783 33 25839 47.85 54.85 42947.55
W10x39 2 72 39 2808 56.55 63.55 4575.6
W10x45 7 257 45 11565 65.25 72.25 18568.25
W10x49 13 531 49 26019 71.05 78.05 4144455
W10x54 5 248 54 13392 78.3 85.3 21154.4
W10x60 7 294 60 17640 87 94 27636
W10x68 2 88.5 68 6018 98.6 105.6 9345.6
W10x77 2 78 77 6006 111.65 118.65 9254.7
W10x88 1 39 88 3432 127.6 134.6 5249.4
W12x53 6 216 53 11448 76.85 83.85 18111.6
W12x58 2 72 58 4176 84.1 91.1 6559.2
W12x65 12 526.5 65 34222.5 94.25 101.25 53308.125
W12x72 10 453 72 32616 104.4 111.4 50464.2
W12x79 7 265 79 20935 114.55 121.55 32210.75
W12x87 6 234 87 20358 126.15 133.15 31157.1
W12x96 2 78 96 7488 139.2 146.2 11403.6
W14x48 1 36 48 1728 69.6 76.6 2757.6
W14x53 1 88.5 53 4690.5 76.85 83.85 5394.075
W14x61 1 36 61 2196 88.45 95.45 2525.4
W14x68 1 49.5 68 3366 98.6 105.6 3870.9
W14x82 1 36 82 2952 118.9 125.9 3394.8
W14x90 4 157.5 90 14175 130.5 137.5 16301.25
W14x99 2 121.5 99 12028.5 143.55 150.55 13832.775
W14x109 1 36 109 3924 158.05 165.05 4512.6
W14x120 1 36 120 4320 174 181 4968
Misc.
# Cost
Shear Studs 8446 122467
Wt (kips)
Lanterns 203 294350
Total Tonnage of St.eel 804 10% Inc. Totals: 884
Cost w Labor/Equip $2,672,441 $3,233,654
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Lateral System
Rockville, MD
Braces
# Length | Weight/ft | Total Weight |Bare Cost($/L.F)| Cost
HSS5x5x3/8 4 89.8 22.4 2011.52 38 3395
HSS6x6x3/8 22 465.5 27.5 12801.25 45 20971
HSS8x8x3/8 7 206.2 37.7 7773.74 60 12276
HSS9x9x3/8 2 58.8 42.8 2516.64 67 3926
HSS9x9x1/2 2 62.1 55.7 3458.97 85 5284
HSS9x9x5/8 6 174.7 67.8 11844.66 102 17868
HSS10x10x5/8 8 214.3 76.3 16351.09 114 24504
Beams
# Length | Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
W16x21 16 304 21 6384 36 10889
W18x40 16 384 40 15360 63 24115
W24x68 16 469.3 68 31912.4 103 48131
W24x94 16 416 94 39104 139 58024
Columns
# Length | Weight/ft | Total Weight | Bare Cost(S/L.F)| Cost
W14x53 4 144 53 7632 81 11701
W14x68 4 198 68 13464 103 20307
W14x82 6 216 82 17712 122 26447
W14x99 4 156 99 15444 147 22866
W14x120 6 297 120 35640 176 52391
W14x176 6 234 176 41184 256 59885
Total Tonnage 1400% Increase Totals: 154
Cost $422,982 $511,808
San Francisco, Existing Setup
Braces
# Length Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
HSS8x8x1/2 20 436.4 48.85 21318 75 32890
HSS9x9x5/8 6 119.5 67.82 8104 102 12225
HSS10x10x5/8 1 22.4 76.33 1710 114 2562
W14x132 1 21 132 2772 193 4062
W14x159 1 21 159 3339 232 4867
W14x176 8 240 176 42240 256 61421
W14x193 13 390 193 75270 280 109223
W14x211 1 24.2 211 5106.2 306 7396
Beams
# Length Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
W16x21 16 304 21 6384 36 10889
W18x40 16 384 40 15360 63 24115
W33x354 16 469.3 354 166132.2 509 238724
W24x94 16 58.8| 94 5527.2 139 8201
Columns
# Length Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
W14x109 4 144 109 15696 161 23152
W14x132 4 198 132 26136 193 38301
W14x145 4 144 145 20880 212 30514
W14x159 2 72 159 11448 232 16688
W14x193 4 156 193 30108 280 43689
W14x211 2 99 211 20889 306 30256
W14x233 2 99 233 23067 337 33349
W14x257 2 99| 257 25443 371 36723
W14x342 4 156 342 53352 492 76696
W14x455 2 78 455] 35490 652 50864
Total Tonnage 3080% Increase Totals: 339
Cost $896,810 $1,085,140
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San Francisco, Additional Frames

Braces
# Length Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
HSS8x8x1/2 26 624 48.85 30482 75 47029
HSS9x9x5/8 5 142 67.82 9630 102 14527
HSS10x10x5/8 17 510 76.33 38928 114 58338
HSS12x12x5/8 28 870 93.34 81206 139 120532
Beams
# Length Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
W16x21 24 304 21 6384 36 10889
W18x40 24 384 40| 15360 63 24115
W33x354 16 469.3 354 166132.2 509 238724
W24x94 16 58.8 94 5527.2 139 8201
Columns
# Length Weight/ft | Total Weight | Bare Cost($/L.F)[ Cost
W14x74 4 144 74 10656 111 15996
W14x90 3 108 90| 9720 134 14450
W14x99 4 198 99 19602 147 29023
W14x109 7 293 109 31937 161 47109
W14x120 4 144 120 17280 176 25402
W14x145 4 82 145 11890 212 17376
W14x159 7 273 159 43407 232 63276
W14x176 4 198 176 34848 256 50672
W14x193 2 78 193 15054 280 21845
W14x211 6 234 233 54522 337 78825
Total Tonnage 301 0% Increase Totals: 331
Cost $886,329 $1,072,458
San Francisco, Additional Frames, EBF
Braces
# Length Weight/ft | Total Weight | Bare Cost($/L.F)| Cost
HSS9x9x5/8 33 820 67.82 55612 102 83890
HSS10x10x5/8 7 210 76.33 16029 114 24022
HSS12x12x5/8 32 960 93.34 89606 139 133001
Beams
# Length Weight/ft | Total Weight [Bare Cost(S/L.F)| Cost
W16x21 24 304 21 6384 36 10889
W18x40 24 384 40 15360, 63 24115
W18x86 16 469.3 86 40359.8| 128 60127
W24x94 16 58.8 94 5527.2 139 8201
Columns
# Length Weight/ft | Total Weight [Bare Cost(S/L.F)| Cost
W14x74 4 144 74 10656 111 15996
W14x90 3 108 90 9720 134 14450
W14x99 4 198 99 19602 147 29023
W14x109 7 293 109 31937 161 47109
W14x120 4 144 120 17280 176 25402
W14x145 4 82 145 11890 212 17376
W14x159 7 273 159 43407 232 63276
W14x176 4 198 176 34848 256 50672
W14x193 4 156 193 30108 280 43689
W14x211 4 156 233 36348 337 52550
Total Tonnage 2370% Increase Totals: 261
Cost $703,787 $851,583
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Concrete
NW SOG

LW Slab
Pumping
Steel Trowel
Saw Cuts

Vapor Barrier

Basement Wall
Wall Footings
Pumping

Formwork

Metal Deck

Reinforcing
Welded Wire

Uncoated
Reinforcing Stl

Chairs

Foundations

Pier

Pumping

Reinforcing

Auguring

Sq Ft. cYy
5" 30000 463
3" 16560 153
6" 180000 3333
6.25" 27600 532
210000 $
LF
8000 $
30000 $
Ht Length
12" 12
24" 1
Sq Ft. Cost
Walls 8400 $
Slab/Footings 1000 $
Sq Ft. Cost
2VLI 216000
3V 27600
Roof Deck 15600
Sq Ft. Cost
6x6W2.1xW2.1 207600
Ton Cost Waste
10.08 $1,012.00
Sq Ft Cost
180600 S 0.35
Diameter # Ccy
2.5 47
3 15
5 11
r
4.5 11
Tons Cost Waste
26.7 $ 1,508.00
Diameter # L.F.
36" 62
60 11

f'c (psi) Cost
4500 $133.00
3000 $167.00
3000 $167.00
3000 $167.00
4019 $28.00
0.72
0.75
0.32
(&% f'c (psi) Cost
420 187 4500 $133.00
420 31 4500 $133.00
187 $29.00
1.89
1.89
Included in Structural Steel
$2.70
$3.20
$3.10
$0.75
10%
Total
f'c Cost
299 4000 $ 135.00
137 4000 $ 135.00
280 4000 $ 135.00
716 S 28.00
227 4000 $ 135.00
10%
Cost
2,170 §$ 38.00
385 $  104.50
Total

Total
$61,574.07
$25,606.67
$556,666.67
$88,912.04
$112,534.07
$151,200.00

$6,000.00
$9,600.00

Total Cost
$24,826.67
$4,137.78
$5,413.33

$15,876.00
$1,890.00

$583,200.00
$88,320.00
$48,360.00

Total
$155,700.00

$11,221.06

$63,210.00

$1,553,242.02

Total
$40,374.34
$18,555.02
$37,797.25
$20,061.82

$44,289.96
Total

$82,460.00
$40,232.50

$340,525.06
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Appendix T — Vasari Energy Model
JCA

Analyzed at 4/1/2012 8:01:44 PM

Mass

Building Performance Factors

L E Jefferson St & Maryland Ave, Rockville,
Location:

MD 20850, USA
Weather Station: 48099
Qutdoor Temperature: Max: 93°FMin: 4°F
Floor Area: 172,816 sf
Exterior Wall Area: 85,885 sf
Average Lighting Power 10MwWin
People: 767 people
Exterior Window Ratio: 0.50
Electrical Cost $0.13/kWh
Fuel Cost $0.97 / Therm
Energy Use Intensity
Electricity EUI: 18 kWh / sf/yr
Fuel EUL 25 kBtu / sf / yr
Total EUL 88 kBlu /sf/yr
Life Cycle Energy Use/Cost
Life Cycle Electricity Use: 95,510,580 kWh
Life Cycle Fuel Use: 1,315,437 Therms
Life Cycle Energy Cost $6,110,403
*30-year life and 6.1% discount rate for costs
Renewable Energy Potential
Roof Mounted PV System (Low efficiency): 167,071 kWh / yr
Roof Mounted PV System (Medium efficiency): 334 142 KkWh [/ yr
Roof Mounted PV System (High efficiency). 501,214 KWh / yr
Single 15 Wind Turbine Potential: 825 KWh / yr

*PV efficiencies are assumed to be 5%, 10% and 15% for low, medium and high efficiency systems
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Appendix U — Sunpower T5 Roof Tiles

SUNP

P

- T5 SOLAR ROOF TILE
OWER EXCEPTIONAL EFFICIENCY & PERFORMANCE

Electrical Data
aciral 3 Ouesee e Caeanaei EFD masses 100CW AM 1Y e ol smmewn St O

Pock Power * Pmax J2OWIL5/3% 17 WL5/2%
Rond Yokage Verep 547V 547V
Rowed Cument Iﬂ-‘p 5.84A 5.98A
Open Circuit Vokoge Voo a4V 49
Sheet Circur Current lge 4.24A 44 A
Maxdmum System Vollmge | UL 0w

Power D38%/K
Tempacature Cosfiicionts | Vehoge Vol ATEAmY /K

Cumsnt |l 15mA /K
NOCT 45°C 4/ 2°C
Series Fuse Rating 204

Tested Operating Condifions

Temgerahrs 40" Fro + 185°F [40° C e 4B5° Q)
Max kad 50 psf 245kg/m* 12400 Pa) front and back -5.g. wind
Impoct Resistonce Hail 1 in (25 mn| ot 52nph |23 n/s)

*Crher laninales moy be awoilchle upor regurest

1yo8
7613

10v4
“ass

e

L (L o

Th A8

HUPETWER oad he S TWED b3a o iedencds of tegiseied rodencds of Sufoes Copomtan
Enorh 3011 Susfrewr Saparemer Alngha uwed Ssechcoice: inchded (v i comiben cow st 1 Cronge vibce e

MM
NI

Mechanical Data

SurPower™ 320 Solor Lominate, or

Solar laninate SunPower 327 Sclar Laminate

Solor Calls ©4 SunPowaer alkback contoct monccrystaline

SunPower 320 Sclar Laminate:
High tronsmissica tempaered glas with
ontrsflectve (AK) coating

SunPower 127 Sclar Lominate:
High tronsmissicn tempaered glas with
antireflactve (AR| coating

Front Gloss

Juncticn Bex IP.45 roted wih 3 byposs diodes, 32 x 155 x 128 (mm|
Cuiput Cables 1000 mm length cables / MutiCeamct |MC4) connsctors
Frame Polyner matrial with fiker reinforcamant, FPELPS

Tils Waight 47 1b2 (212 kgl

Roof Coverage  85% NS

Warranties and Cerfifications

25year Imted power wamanty
10year Imied product worranty

Caifications CSA hsted (Tested to UL 1703], Class C Fira Rating

‘Waorranty

Bulkin the USA Complaes with the “Buy American” clause
of The Amarcan Recovery ond Relnvestment Act of 2009,

SunPower T5 Sclar Roof Tile technology is prokcied
by US Patent Numbers 5,505,788 and RE 38,988.
Crther US and for international patents issued or
pending may opply.

sunpowercorp.com
Dacorart # 31147562 Be " /TR BN
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Appendix V — System Advisor Model Cash Flow

Energy (kWh)
Energy Value ($)

Operating Expenses
Fixed O&M Annual
Fixed O&M

Variable 0&M

Insurance

Property Assessed Value
Property Taxes

Net Salvage Value

Operating Costs

Deductible Expenses

Financing
Debt Balance

Debt Interest Payment
Debt Repayment

Debt Total Payment

Federal IBI
State 1BI
Utility 181
Other 1B
Total IBI

Federal CBI
State CBI
Utility CBI
Other CBI
Total CBI

Federal PBI
State PBI
Utility PBI
Other PBI
Total PBI

Federal PTC
State PTC

Federal ITC
State ITC

Tax Effect on Equity (State)
State Depreciation Schedule (%)
State Depreciation

State Income Taxes

State Tax Savings

Tax Effect on Equity (Federal)
Federal Depreciation Schedule (%)

Federal Depreciation

Federal Income Taxes

Federal Tax Savings

After Tax Cost
After Tax Cashflow

Payback
Cumulative payback

© o oo oo oo

© oo oo © oo oo o o o o

© oo oo

o o oo

o o o o

-224,380.48
-224,380.48

1
55,522
9,751.68

4
1,059.08

0

1,121.90
224,380.48
4,487.61

4

6,668.59

-6,668.59

-224,380.48
13,462.83
6,099.68
19,562.51

© o o oo

67,314.14
0

20
38,144.68
-4,079.33
4,079.33

20
38,144.68
-15,175.10
82,489.24

60,337.46
66,867.19

81,981.58
-142,398.90

2
55,244
9,945.49

0

1,085.56

0

1,149.95
224,380.48
4,487.61

0

6,723.12

-6,723.12

-218,280.80
13,096.85
6,465.66
19,562.51

© oo oo

32
61,031.49
-5,659.60
5,659.60

32
61,031.49
-21,053.72
21,053.72

427.69
7,087.19

22,322.51
-120,076.39

3
54,968
10,143.16

4
1,112.70

0

1,178.70
224,380.48
4,487.61

4

6,779

-6,779

-211,815.13
12,708.91
6,853.60
19,562.51

© oo oo

19.2
36,618.89
-3,927.48
3,927.48

19.2
36,618.89
-14,610.21
14,610.21

-7,803.83
-1,011.97

14,351.52
-105,724.87

q
54,693
10,344.76

0

1,140.51

0

1,208.17
224,380.48
4,487.61

0

6,836.29

-6,836.29

-204,961.53
12,297.69
7,264.82
19,562.51

© oo oo

o

1152
21,971.34
-2,877.37
2,877.37

11.52
21,971.34
-10,703.82
10,703.82

-12,817.61
-5,890.76

9,608.60
-96,116.27

5
54,420
10,550.36

0

1,169.03

0

1,23837
224,380.48
4,487.61

0

6,895.01

-6,895.01

-197,696.71
11,861.80
7,700.71
19,562.51

© oo oo

1152
21,971.34
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